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Abstract

The rapid depletion of conventional energy sources such as fossil fuel, oil, and coal

has shifted researchers’ focus towards more green sustainable energy sources. The

conventional energy sources leave carbon footprints, sulphur and other harmful

contents which are not only harmful to the environment, but also to the human

health. Solar energy is by far the cleanest source among the renewable energies

available. Solar energy in the form of photovoltaics offers a wide array of benefits

such as having low maintenance cost, low carbon footprint, noise-free, and being

decentralized as compared to wind, geothermal and tidal energy.

PV panel’s output is dependent upon weather conditions. Under uniform irradi-

ance on all PV panels, PV systems have only one global maximum power point

(GMPP) however under non-uniform irradiance level, that is partial shading con-

dition (PSC), multiple local maximum power points (LMPPs) exists with only

one GMPP. Therefore the tracking of GMPP is very critical for harvesting the

maximum power out of the PV system and this tracking of GMPP is known as

maximum power point tracking (MPPT).

The conventional gradient-based MPPT techniques such as Peturb and Observe

(P&O) and Incremental Conductance (IC) perform well under uniform irradiance

but fall into the local maxima trap under Partial Shading (PS). The soft comput-

ing or metaheuristic optimization algorithm based MPPT control techniques are

also presented in the literature. Standard Particle Swarm Optimization (PSO) and

its variants along with the recently proposed optimization algorithms lack voltage

stability in the initial phase where the large voltage variance may cause safety and

technical issues for grid-connected operations. Modern deep learning and machine

learning algorithms provide a strong ability to draw cross-correlations between

nonlinear inputs with respect to desired outputs. However they are computation-

ally very expensive.

In this work, a standard PV system’s MPPT problem is solved using reference volt-

age estimation by a hybrid Neural Network (NN) and Swarm Intelligence frame-

work. In this thesis, particularly, a General Regression Neural Network (GRNN)



ix

trained with Sailfish Optimization (SFO) algorithm is utilized. Considering the

limitations of back propagation’s (BP) inefficient training of feedforward NN, SFO

is utilized to maximize NN training for PV systems’ MPPT control application as

a hybrid MPPT technique. The hybrid GRNN-SFO is highly effective to detect

MPPT due to precise estimation capability of the GRNN combined with global

optimization of SFO.

Comprehensive comparative study is done with PSO and P&O which are trained

using GRNN and Radial Basis Function Network (RBFN) to check the perfor-

mance of the proposed MPPT technique. Moreover, RBFN trained using SFO is

also compared against the proposed GRNN-SFO to determine the superior perfor-

mance of the proposed technique. In total, five techniques are compared against

the proposed GRNN-SFO. Designed case studies are comprehensive enough to

test and validate the superior performance of GRNN-SFO under challenging test

patterns. The results exhibit superior performance of GRNN-SFO showing global

maxima tracking with upto 99.9% efficiency and comparatively 12ms faster track-

ing time under PSC. The analysis of statistical data has also been performed to

examine the robustness and responsiveness of the proposed technique.

Keywords: Maximum Power Point Tracking (MPPT), Photovoltaic

(PV), General Regression Neural Network (GRNN), Partial Shading

(PS), Complex Partial Shading (CPS), Sailfish Optimizer (SFO).
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Chapter 1

Introduction

In this chapter, a brief introduction of renewable energy along with its impact

on solving future environmental problems is elaborated. The importance of solar

energy as a significant electrical power source is highlighted and additionally, this

chapter helps to scale the importance of the proposed study in the future with the

pros and cons of the PV systems.

The mathematical model and characteristics of the PV systems are studied in

detail. An overview of types of equivalent models, electrical characteristics of

single-cell, effects of irradiance, and temperature on PV systems is given. The

effects of scaling the PV system in a series-parallel combination and correspond-

ing I-V and PV characteristic curves are elaborated. Different diode models are

also studied and implemented in MATLAB along with the analysis of electrical

parameters under PSC.

Finally the chapter shall elaborate on the thesis objectives, and overview.

1.1 Background

Energy is the backbone of a country’s economic development. It is a crucial

aspect of human life such as in agriculture, construction, electricity production

and many other aspects are all fueled by energy. Energy is essential for economic

1
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development. The demand-supply balance is shifting due to the fast expansion in

industrial production and utilities. As a result, all available energy sources have

been depleted. The amount of energy used by any country determines its progress.

Moreover, the energy consumption per capita is higher in developed countries [2].

The usage of fossil fuels is rising compared to the rise in energy demand. The

majority of the world’s energy comes from the combustion of fossil fuels. It has

resulted in a severe environmental crisis. It is also a significant contributor to

global warming.

Non-renewable and renewable energy sources are the two primary categories of

energy sources. Non-renewable energy sources include fossil fuels such as coal,

oil, and gas whereas renewable energy sources include solar, geothermal, wind,

and tidal energy. Numerous countries are making changes to include as many

renewable energy sources as possible in national grids.

Since ancient times, we have relied on sun-oriented energy. Solar generated energy

may be used in both direct and indirect ways. Solar based energy has a function

in the maturation of crops, and evaporation.

The photoelectric phenomenon, thermoelectric, and concentrated solar power are

three main sources of solar renewable techniques [3], [4] and these cells are quite

adaptable. The heating frames make use of solar powered radiator converters and

materials that store and transfer heat for indoor usage. Concentrated solar based

power might be a future trend in utility scale power [5], [6].

1.2 Renewable Energy Statistics

Renewable energy’s proportion of global energy consumption is expected to in-

crease by one-fifth in the next five years, reaching 12.4% by 2023. Renewable

energy will account for over 30% of total electricity consumption in 2023, making

it the fastest-growing sector in the power industry. Renewable energy is expected

to capture more than 70% of global power generation growth during this phase,

with solar powered photovoltaic power generation leading the way, followed by
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wind, hydro, and bio-energy. Hydropower will continue to be the most popular re-

newable energy source, accounting for 16% of global energy consumption by 2023,

followed by wind energy (6%), solar powered photovoltaic power generation (4%),

and biofuel (up to 3%) [7], [8].

1.3 PV Cell Modeling

Different PV cell models are covered in this section. PV cell acts as a constant

current source with an anti-parallel diode to model the electrical behavior. This

is referred to as the PV cell’s ideal model. The difficulty with the ideal model is

that it ignores non-linearity caused by the external factors. In order to tackle such

non-linearities, the PV cell’s practical models are also discussed [9], [10], [11].

1.3.1 Single Diode Model

PV panel acts as a current source when exposed to light. Photon current is

produced by a PV panel in response to irradiance. Figure 2.1 depicts an ideal

diode model with a current source and an anti-parallel diode. Eqation 1.1. shows

the output current for the ideal diode type.

I = Iph − I01 = Iph − Is · e
( V
ηNsVT

)

(1.1)

Where I denotes current for the ideal diode model, I s represents the saturation

current, I o1 is the diode current, η is shows the diode ideality factor, V is the

output voltage, and V T is the thermal voltage. Total cells in series combination

are represented by N s [12], [13], [14].

The ideal diode model does not account non-linearity of I-V and PV curves. There-

fore, the practical model is presented in Figure 1.1. The mathematical modeling

of the practical single diode model is presented by Equation 1.2 whereas Equation

1.3 illustrates the thermal voltage.
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Figure 1.1: Single Diode Model of photovoltaic cell depicting ideal and prac-
tical photovoltaic cell(s)

I = Iph − I01 = Iph − Is · e
(V +RsI
ηNsVT

) − V +RsI

Rp
(1.2)

VT =
NsKT

q
(1.3)

Where I is the output current for the ideal diode model, I ph is the photon current,

I s is the saturation current of diode, I o1 is the diode current, η is diode ideality

factor, and V is the output voltage[15], [16].

The effect of Rs and Rp can be seen in the Equation (1.2). Modeling the I-V and

PV curves of a PV cell using a single diode is relatively a simple design, however

the single diode model doesn’t properly reflect a practical PV cell.

1.3.2 Double Diode Model

To improvise the equivalent model a double diode model is another approach

presented in the literature that modulates the PV cell properties [18]. Equation

for double diode model is presented in Equation 1.4.

I = Iph −
(
e
( V
η1NphVT

) − 1

)
Is1 − Is2

(
e
( V
η1NphVT

) − 1

)
− V +RsI

Rp
(1.4)
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where I is the output current for the ideal diode model, I ph is the photon current,

I s1 is the saturation current for the first diode, I s2 is the saturation current for

the second diode, I o1 is the first diode current, I o2 is the second diode current,

η is diode ideality factor, and V T is the thermal voltage [19], [20]. Figure 1.2

illustrates a double diode model.

Figure 1.2: Double Diode Model of photovoltaic cell depicting ideal and prac-
tical photovoltaic cell(s)

Table 1.1 contains the description of the properties of the PV cell [17].

Table 1.1: PV cell symbols and description

Symbol Description

I Output Current
V Output Voltage
Io Reverse saturation current
IPV Cell current generated by PV arrays
Id Diode Current
Rs Series Resistance
Rp Parllel Resistance
Iph Solar induced photovoltaic current
Ns Total series connected cells
Np Total parallel connected cells
α Diode Ideality Factor
VT Thermal Voltage of PV module
q Electron Charge=1.6022× 10−19 C
k Boltzmann Constant=1.380 73× 10−23 J/K
T P-N junction Temperature
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1.3.3 Triple Diode Model

The triple diode model is also presented in the literature to successfully simulate

the non-linearities of the I-V and PV curves in a more practical way [21]. The

mathematical model of the triple diode model is presented in Equation 1.5.

I =

(
e
( V
η1NphVT

) − 1

)
Is1 − Is2

(
e
( V
η1NphVT

) − 1

)
− Is3

(
e
( V
η1NphVT

) − 1

)
(1.5)

Where I is the output current for the ideal diode model, I ph is the photon current,

I o1 , I o2 and I o3 are the current of three diodes [22].

In triple diode model, the current source has three parallel diodes as illustrated in

Figure 1.3.

Figure 1.3: Triple Diode Model of photovoltaic cell depicting ideal and prac-
tical photovoltaic cell(s)

1.4 Characteristics of a PV Cell

The PV cell’s I-V and PV properties are reviewed in this section. This section also

covers the impact of dynamic environmental circumstances on I-V and PV curves.

PV parameters are identified, which define the PV and I-V curves’ properties [18],

[23], [24].
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1.4.1 I-V and PV Characteristics

Figure 1.4 shows I-V and PV curves of the PV module. PV cells are made up

of PN junctions that generate current as soon as light strikes the PN junction.

Variable load resistance at the output of the PV module can be used to generate

an I-V curve [25], [26].

The basic principle is to short circuit the output primarily, which indicates that the

load resistance is zero. The maximum current flows under these conditions, which

is known as a short circuit current. After that, the resistance is changed from zero

to maximum, resulting in an open circuit at the panel’s output at zero current and

max voltage called open-circuit voltage [27]. The I-V curve is a superposition of

current source and diode action properties. Figure 1.4 represents an I-V and PV

curve of a standard PV cell.

Figure 1.4: I-V and PV electrical characteristics of standard mono-crystalline
silicon PV cell operating under normal conditions

1.4.2 Effects of Series and Parallel Modules

To achieve high power, scaled up systems require series-parallel configurations of

PV panels. Series combination tends to increase the overall voltage whereas paral-

lel combination increases the overall current. Figure 1.5 depicts PV modules cou-

pled in series/parallel configurations under various environmental circumstances.
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Changes in the I-V and PV curves are caused by dynamic environmental factors

[20].

1.4.3 Description of PhotoVoltaic Parameters

Figure 1.5: Description of Different Parameters such as fill factor, efficiency
of Photo-Voltaic Cell

Figure 1.5 represents the different parameters of a PV panel which are described

as below

� Open circuit voltage (V oc): When the output resistance is infinite, volt-

age appearing at the load is called open-circuit voltage (V oc).

� Short circuit voltage (I sc): When the output load is zero, the current

through the load is maximum and it is called short circuit current (I sc).

� Maximum power point (MMPT): The point of operation at which max-

imum power is delivered to the load. It is the product of Impp and Vmpp.

� Efficiency (η): The efficiency of PV cells depends upon the properties of

the material. η is the ratio of the practical and theoretical powers. Therefore
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it is highly dependent upon the type of cell. Typically its value is between

9%-19%.

Figure 1.6 represents a series/parallel combination of PV panels. PV panels can

get shaded due to shadows from fallen leaves, nearby buildings, clouds etc. This

shading results in multiple LMPPs and only GMPP which makes it very challeng-

ing for any MPPT technique to track the GMPP.

Figure 1.6: Series/Parallel photo-voltaic panels with uniform and non-uniform
shading. Solar Irradiance significantly drops due to shading from either leaves,

clouds, nearby buildings

In this work a “SunPower SPR-320E-WHT-D” panel is utilized. The parameters

of the PV panel are given in Table 1.2. These parameters are taken from the PV

module in MATLAB 2018a/Simulink.
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Table 1.2: Electrical Parameters of SunPower SPR-320E-WHT-D

Parameters Values

Power at MPP (Pmpp) 300 W
Voltage at MPP (Vmpp) 37.2 V
Current at MPP (Impp) 7.79 A
Short Circuit Current (I sc) 8.85 A
Open Circuit Voltage (V oc) 44.72 V

1.5 Influence of Changing Solar Irradiance and

Temperature on PV Curve

Figure 1.7: Variation on PV curve due to change in temperature

Figure 1.8: Variation on I-V curve due to change in temperature

To gauge the impact of temperature, the irradiance is maintained at Standard

Testing Conditions (STC) and temperature is varied. A steady decrease in output
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power is observed [28]. The panel’s temperature and power are inversely related,

as illustrated in Figure 1.7.

The deviation in temperature effects the change in PV curve very minutely. How-

ever, temperature has a significant impact on voltage, as seen in Figure 1.8. The

MPPT on the PV curve shifts as the temperature changes showing an inverse

proportional mathematical relationship.

When the temperature is held constant and the irradiance varies, MPP shifts

accordingly, as illustrated in Figure 1.9.

The change in irradiance, on the other hand, has no influence on the voltage but

it does affect the current, as shown in Figure 1.10. The change in power is directly

proportional to the change in irradiance [29].

Figure 1.9: Variation on PV curve due to change in irradiance

Figure 1.10: Variation on I-V curve due to change in irradiance
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1.6 Effect of Partial Shading

Several panels are linked in series/parallel configuration for high power generation.

Figure 1.6 depicts a 4x2 array of PV modules. Each PV module may or may

not receive the same amount of irradiance. As demonstrated in Figure 1.6, the

intensity level can change due to shadows from neighboring buildings, clouds,

leaves, or dust [30]. This effect is known as PSC in PV panels. The modules that

do not get equal irradiance become least productive, whereas the excess power is

wasted in the PV panels. The PV panel might get irreparably damaged as a result

of heat energy dissipation [31], [32].

Figure 1.11: I-V curve consisting of multiple peaks under PSC

Figure 1.12: PV curve consisting of one GMPP and multiple LMPP’s under
PSC

To provide protection to PV panels against such hot spots, bypass diodes parallel

to the PV module are connected to provide an alternate path for the current. One

downside of these diodes is that the IV and PV curves become non-linear as shown
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in Figure 1.11 and Figure 1.12 respectively [33]. The maximum power from this

non-linear behavior cannot be extracted using typical MPPT procedures. Figure

1.12 depicts GMPP locations for MPPT control algorithms to attain [34].

1.7 Thesis Objectives

An exponential increase in demand for PV systems due to decreasing cost per

watt and quick installation has made PV systems a popular source of energy. The

changing weather conditions lowers the available energy harvest. There is a need

for a control system to take advantage of available solar energy. This controller is

referred to as MPPT control of the PV systems. The cost of an MPPT controller is

trivial as compared to the benefits of stable output, more energy, and cost-benefit

surplus.

The MPPT control suffers from PSC problems generating multiple solutions. Ad-

ditionally, traditional controllers such as HC, I&C, and P&O cannot tackle PSC

successfully. They suffer from the LM trap and produce large oscillations. Some

modern controllers such as PSO, PSOGS, and SSO tend to track the GMPP how-

ever they produce undesired oscillations and random fluctuations. These issues

accumulate power losses. Effective MPPT control is essential which can balance

the trade-off between tracking time and power loss caused by slow convergence

and random fluctuations around GMPP.

In technical terms, the modern Neural Networks (NNs) possess the capabilities

of nonlinear control strategies. The added benefit of being model-free optimiza-

tion makes it suitable for existing and new PV installations and plug and play

capabilities [35].

The need to improve the performance using novel ideas for MPPT control is high

in demand. Renewable resources such as solar energy PV systems are crucial to

counter global warming. The masses can only adopt the renewable energy if the

source is economically viable. Higher yield makes the PV system economically

affordable and technically practical. The existing research gap and benefit of
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1.8 Thesis Overview

This dissertation consists of 5 chapters.

Chapter 1 presents a brief introduction to renewable energy, PV systems, appli-

cations, advantages, PV cell models, and future aspects.

Chapter 2 discusses the literature review of the MPPT techniques that are avail-

able in the literature. Moreover, the components of PV systems such as the layout

and functionality of DC converters, PV arrays inverters, controllers, and their

properties are discussed.

Chapter 3 presents a GRNN and RBFN based MPPT controller which is trained

using a novel Sailfish Optimization algorithm. The mathematical modeling is

elaborated for PV systems and its ability to handle PS and CPS is emphasized.

Chapter 4 introduces a detailed result comparison of GRNN-SFO based MPPT

controller which is proposed for variable weather conditions. A comparative study

is made against PSO and P&O hybrid models with GRNN and RBF based NN

models. The results of several studies are presented in Chapter 4. Moreover, the

findings are discussed and new problem statements are formulated for future work.

humanity  are  the  main  motivation  behind  this  work  [36].  The  objectives  of  this

thesis  are  listed  below:

�  Implementation  of  Novel  Sailfish  optimizer  Tuned  General  Regression  Neural

Network  based  Maximum  Power  Point  Tracking  (MPPT)  Technique  for  PV

systems.

�  Testing  under  varying  irradiance,  PSC,  and  especially  CPS.

�  The  proposed  technique  achieves  greater  than  99.9%  power  tracking  effi-

ciency  with  less  than  100  ms  tracking  time  and  less  than  130  ms  settling

time.

�  GRNN-SFO  extracts  10%  more  energy  as  compared  to  competing

    techniques.
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Chapter 5 summarizes the dissertation with achieved results and future research

direction.

1.9 Chapter Summary

This chapter focuses on the rapidly shifting trends away from traditional energy

sources and towards renewable energy sources. The advantages of PV systems

are reviewed, as well as the impact of partial shading (PS) on PV system per-

formance, in order to demonstrate the need for a sophisticated maximum power

point tracking (MPPT) management approach.

Different PV panel modelling methodologies, such as the single diode model, dou-

ble diode model, and triple diode model, are also described. Due to the use of

a single diode, the single diode model is fairly simple to design, but it does not

account for all non-linarites of the I-V and PV curves. The double diode model

compensates for these flaws, but the triple diode model provides a more exact

description of the I-V and PV curves. The effect of temperature and irradiance

variations on the I-V and PV curves is then studied, demonstrating that changes

in environmental variables have an impact on PV power. Only one global peak

is detected in the PV curve under uniform irradiation and temperature. These

multiple peaks make tracking of MPP very challenging.

Finally this chapter discusses the objectives and overview of this thesis.



Chapter 2

Literature Review

In this chapter, a detailed literature review has been put forth, which discusses

the techniques and work that has been done in the domain of MPPT. This section

is to discusses the details of work that has been done in the field of MPPT and

discuss the research gap that the existing techniques have left behind where there

is gap for improvement.

2.1 Introduction

Multiple techniques and methodologies are used to manufacture PV panels. PV

cells are the building blocks of PV systems. The cell’s efficiency is highly dependent

upon the manufacturing technology. PV fabrication is a sophisticated and complex

technology. The efficiency depends upon the materials and their purity. The

foundries use materials such as monocrystalline, polycrystalline, and amorphous

silicon. These PV cells have conversion efficiencies of upto 27%. The low cost and

high power PV cells are the focus of academic research and manufacturing [37],

[38].

The highest efficiency in the lab for thin-film technology for CIGS and CdTe

is 23.4% and 21.0% respectively. With the concentrated solar technology upto

38.9% efficiency is achieved. The new high concentration multi-junction solar cells

achieve 47.1% efficiency. Multiple layer cells and multi-junction cells of up to 43%
16
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efficiency have been made but these cells are costly to produce. Germanium is

used for manufacturing which is a rare element. So there is a tradeoff between

cost, efficiency, and power. The largest producers of PV cells are China, Japan,

South Korea, Malaysia, Germany, India, and the USA [39].

It is quite up-front that shading limits current generation. PV systems can expe-

rience shading due to nearby buildings, trees, cloudy weather or dust upon them

or mountains if panels are installed in the fields with mountains nearby. In any

case, shading will impact the efficiency of the solar systems. Since solar panels are

connected in series to form strings, any shading on any panel will force the PV

panels, including the shaded ones, to carry the same current. Consequently, the

shaded panels might get reversed biased and may act as a load and they will draw

power which will rapidly minimize the yield of the PV systems [40].

Solar systems are the need of the hour due to exponential growth in energy con-

sumption. With ever increasing power hungry devices and the inevitable depletion

of fossil fuels along with rapidly increasing fuel prices and degradation of the envi-

ronment due to global warming is pushing researchers and organizations to move

towards more environment friendly energy sources such as solar, wind, geothermal,

and biomass. Renewable energy sources have their own merits and demerits [41].

PV systems are increasingly being utilized in stand-alone and grid-connected ap-

plications across the world. A lot of work is being carried out to extract the

maximum power out of them. The non-linear nature of PV systems renders their

output insufficient for dynamic loads. To increase their performance, MPP needs

to be tracked since the output of PV systems depends upon the ambient conditions

[42], [43].

Non-uniform solar irradiance caused by nearby trees, buildings, dust, or clouds

results in PS problems. However, there is only one point that corresponds to the

global maximum power point (GMPP) where system output is at its maximum.

Amongst all energy sources, solar energy, particularly photovoltaic systems are the

most popular since they’re highly reliable, have low operational and maintenance

costs, and are noise-free [44], [45], [46].
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To actively track GMPP and make the best use of the PV systems, the output

of the PV system is connected to a load via a suitable power converter. The

low power from the microcontroller needs to be normalized for driving the control

signal. Usually, a weak controller is not adequate for driving power MOSFET.

Therefore a MOSFET driver circuit is used with DC converter switching. The

shading of PV modules causes the PV modules to fall into a PS condition. The

irregular solar irradiance due to PS result in the hot spot effect on the PV panels,

therefore bypass diodes are used to provide an alternative path for high current

[47].

2.2 Trends in Implementation of PV Techniques

Several MPPT algorithms and techniques have been proposed for direct and in-

direct methods [48]. In the direct control methods, MPP is tracked using either

mathematical functions or pre-calculated data such as in Open Circuit Voltage

(OV) and Short Circuit Current (SC) methods. These techniques offer a simple

implementation, however they cannot modify themselves based upon changes in

the weather conditions. Contrary to these methods, voltage and current measure-

ments are used such in techniques such as in P&O [49], Incremental Conductance

(INC) [50], and hill-climbing [51] algorithms. The first set of techniques are simple

in structure and are only applicable under uniform conditions or equal change on

all PV modules [2].

The difficulty in tracking the direction of operation towards the improved power

and oscillations at peak points is overcome by bio-inspired meta-heuristic algo-

rithms such as Cuckoos Search (CS) [52], Grasshopper Optimization (GHO) [31],

Moth flame optimization (MFO) [53], dragonfly optimization (DFO) [54], group

teaching optimization algorithm (GTOA) [55], improved team game optimization

[56] and particle swarm optimization gravity search (PSOGS) [57], [58].

The algorithms utilizing the chaos theory meta-heuristic operation are dependent

upon several parameters including but not limited to the number of iterations,

computation time, and exploration balancing variables. CS algorithm uses random
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values to Levy flight, however even a small number of searching agents population

can magnify the defects [59].

Another set of MPPT techniques are intelligence based techniques such as hybrid

Neuro-Fuzzy controllers. Hybrid systems are accurate but require very fast sensors

and costly micro controllers in order to affectively eliminate the oscillations around

the MPP. The accuracy of these techniques is, however subject to failure if noise

is added to the sensing input.

Fuzzy logic controller (FLC), are a new class of intelligent systems. However,

they are dependent upon knowledge and fuzzy parameters such as error metrics

and scaling factors including the rule base. Computational intelligence techniques

such as fuzzy logic, neural networks, and evolutionary algorithms tackle the design

problem with high accuracy but with increased computational expense [60], [61].

2.3 Maximum Power Point Tracking (MPPT)

Techniques Review

In this chapter different MPPT techniques are studied under the following classi-

fications:

� Conventional Techniques

� Intelligent Techniques

� Swarm Intelligence Techniques

The classification of all these MPPT techniques is presented in Figure 2.1.

The conventional MPPT techniques include a fractional short-circuit (FSCC), frac-

tional open-circuit voltage (FOCV) [62], P&O [63], INC, hill climbing (HC), mod-

ified incremental conductance (Mod-INC), and lookup table method (LUT). The

advantages of these techniques are their low complexity for implementation, quick

tracking of MPP, and high efficiency under uniform irradiance and temperature.
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Intelligent MPPT techniques include Support Vector Machine (SVM) [68], Mul-

tivariable linear regression, KNN, and artificial neural networks. Under varying

environmental conditions these techniques perform well with very high accuracy

and less tracking time [69], [70], [71]. One of the problems with these techniques is

Figure  2.1:  Set  of  MPPT  techniques  presented  in  the  Literature

However,  their  disadvantage  is  the  undesired  oscillation  at  MPP  which  results  in

significant  power  losses.  Also,  under  PSC  conventional  techniques  do  not  possess

the  ability  to  differentiate  between  GMPP  and  LMPP  and  consequently  they  tend

to  get  stuck  in  LMPP  resulting  in  extensive  power  losses  [64].

Another  class  of  MPPT  controllers  that  use  meta-heuristic  optimization  algo-

rithms  is  called  swarm  intelligence-based  MPPT  control.  These  MPPT  control

techniques  use  optimization  algorithms  which  include  PSO,  Particle  Swarm  Grav-

itational  Search  (PSOGS),  Salp  Swarm  Optimization  (SSO),  Fruit  Fly  Optimiza-

tion  (FFA),  and  Flower  Pollination  Algorithm  (FPA).  The  low  computation  cost,

high  efficiency  and  medium  time  required  for  the  MPPT  are  the  main  advantages

of  these  MPPT  control  techniques.  These  control  techniques  can  effectively  dif-

ferentiate  between  GMPP  and  LMPP  and  extract  the  maximum  power  [65],  [66],

[67].  However,  they  suffer  from  high  settling  and  tracking  time  to  attain  oscillation

free  settling  at  higher  power.
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the requirement of large data set for training [72], [73]. However, ML algorithms

combined with SI-based techniques can resolve these issues.

2.3.1 Conventional Techniques

In this sub-section, conventional MPPT techniques are presented and explained

in briefly. These techniques are listed below:

� Fractional Open Circuit Voltage (FFCV)

� Fractional Short Circuit Current (FSCC)

� Perturb and Observe (P&O)

� Incremental Conductance (INC)

2.3.1.1 Fractional Open Circuit Voltage (FOCV)

FOCV is an approximation based technique. In this technique, a pilot PV cell of

the same type of PV module is used. This cell is employed whose open circuit

voltage is monitored every time. It is assumed that the same irradiance and

temperature conditions are applied to the pilot cell. MPP using FOCV can be

calculated using

Vmpp
∼= KVoc

(2.1)

Where Vmpp is the voltage at MPP and K is the scaling factor whose value is

between 0.7-0.8. The Flowchart of the implementation of FOCV is shown below.

The advantage of FOCV is that it is very simple to implement. This technique can

be implemented using the digital-analog circuit without any costly hardware. The

drawback associated with this technique is that it is based upon the approximation

of V oc which is very inefficient and requires a pilot cell that needs to be operated

under the same conditions. Moreover, this technique fails to perform under PSC

[74].



Literature Review 22

Figure 2.2: Flowchart depicting the working principle of Fractional Open
Circuit Voltage (FOCV)

2.3.1.2 Fractional Short Circuit Current (FSCC)

This technique is similar to FOCV. Since MPP contains both Impp and Vmpp so,

in this technique Impp is taken into account in the place of Vmpp. Pilot cell’s short

circuit current is multiplied by a factor K and is fed to the PI controller which

maintains the duty cycle of the boost converter which can be calculated using

Equation 2.2. The generic flowchart of FSCC is shown in Figure 2.3.

Impp
∼= KIsc

Where I sc is the short circuit and K is the scaling factor whose value is between

0.7-0.8. similar to FOCV. The FSCC is also a simple technique to implement and

no complex hardware is required. However, similar to FOCV, FSCC, also uses an

(2.2)
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approximation therefore it fails to track GMPP effectively and also fails to track

GMPP under PSC.

Figure 2.3: Flowchart depicting the working principle of FSCC Fractional
Short Circuit Current (FSCC)

2.3.1.3 Perturb and Observe (P&O)

P&O is one of the simplest algorithms to implement on any microcontroller. Volt-

age and current sensors are required to calculate the fitness function in terms of

power after each sample. As the name suggests, perturbation is made on power

which decides the next perturbation of the duty cycle. The duty cycle is updated

and the previous power is compared with the next power. If the current power is

higher than the previous power, the duty cycle is increased whereas if the current

power is less than the previous power, the duty cycle is decreased. This process

continues and enables P&O to track GMPP. The flowchart of the P&O algorithm

is shown in Figure 2.4.
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Figure 2.4: Flowchart depicting the working principle of (P&O)

Where dPPV and dV PV are the differential power and voltage of PV. P&O is also

dependent upon the change in voltage of the PV module. The problem with P&O

is the continuous oscillations around GMPP and under PSC, P&O tends to get

stuck into the LM trap. As presented in the literature, under uniform irradiance,

P&O has an efficiency of 92-98% [75].

If the power is increasing, then it perturbs the voltage in the same direction. If the

power is decreasing, it starts perturbation in the reverse direction. P&O works fine

when there is a single maximum power point on the PV curve. The mathematical

formulation of P&O is shown in Equation 2.3 to Equation 2.5.

dPPV

dVPV

= 0 = MPP (2.3)

dPPV

dVPV

> 0 left of MPP (2.4)

dPPV

dVPV

< 0 right of MPP (2.5)
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2.3.1.4 Incremental Conductance (INC)

In a 2D plane, the graph theory suggests that in any monotonic relationship the

peak point on the graph has zero differential rate of the slope. As opposed to

power in P&O, INC tracks MPP using the slope of the power curve which makes

incremental conductance superior to P&O [76]. The flow chart shown in Figure2.5

explains the working of INC. We know that maximum power is defined by Equation

2.6.

PMPP = VMPP × IMPP (2.6)

and instantaneous power is

P = V × I (2.7)

Taking derivatives of Equation 2.7 with respect to voltage

dP

dV
=

d

dV
(V × I) (2.8)

dP

dV
= 1 +

d

dV
· V (2.9)

At MPP

dP

dV
= 0 (2.10)

Therefore

dI

dV
= − 1

V
(2.11)
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Where dI/dV is called differential incremental conductance, PMPP is power at

the MPP, VMPP is the voltage at MPP, and IMPP is current at MPP. Thus we

can track MPP by using incremental conductance of the PV curve. From the flow

chart, as shown in Figure 2.5, the conditions for incremental conductance are as

follows

dP

dV
= 0

∆I

∆V
= − 1

V
(2.12)

dP

dV
> 0

∆I

∆V
> − 1

V
left of MPP (2.13)

dP

dV
< 0

∆I

∆V
< − 1

V
right of MPP (2.14)

The Speed of INC depends upon the increments or decrements in V ref . Larger

increments lead to fast-tracking but cause more oscillations at GM which leads to

power losses [77].

Figure 2.5: Flow Chart of the Incremental Conductance (INC) Scheme for
MPPT
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2.3.1.5 Performance Evaluation of Conventional MPPT Techniques

In this section, the comparison between conventional MPPT techniques is pre-

sented as shown in Table 2.1. The comparison is made in the form of advan-

tages, disadvantages, and applications. The biggest problem with the conventional

techniques is tracking of GMPP under PSC where these techniques get stuck in

LMPP’s and lose significant amount of power thereby reducing overall efficiency

of the system [78].

Table 2.1: Comparative Evaluation of Conventional Techniques

Technology Advantage Disadvantage

FOCV Suitable under low temper-
atures

In-efficient under PSC

FSCC Simple Implementation Significant Power loss under
PSC

P&O Best for uniform-irradiance
conditions

Gets stuck in LMPP under
PSC

INC Better than P&O Costly in terms of implemen-
tation

� Support Vector Machine (SVM)

� Artificial Neural Network (ANN)

� K-Nearest Neighbour (KNN)

� Multivariable Linear Regression (MLR)

� Boosted Tree (BoT)

2.3.2  Intelligent  Techniques  (IT)

In  this  section  IT  based  MPPT  techniques  are  discussed  which  are  as  follows:
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2.3.2.1 Support Vector Machine (SVM)

SVM is a data categorization, pattern identification, regression, and prediction

approach that uses machine learning. The categorization is formally represented

by Equation 2.15 [79].

Yfit = train classifier · predictcn(x) (2.15)

SVM may be used to solve two distinct classes by identifying the best hyperplane.

A hyperplane distinguishes the positive data set from the negative data set with the

maximum distance. The margin is the greatest possible gap between two locations.

Figure 2.6 depicts a margin, and hyperplane between positive and negative data

sets [80].

Figure 2.6: Support Vector Machine Visualization with hyperplane and sup-
port vectors

Where the positive data is represented as w . X + b ≥ 1 and the negative data as

w . X - b ≤ -1. w is the hyperplane normal vector whereas x is the input vector.

The separating hyperplane u is equal to zero. The margin is given as 2.16.

M =
(x+ − x−) · w

|w|
(2.16)

Maximizing margin is given by Equation 2.17.
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2

|w| (2.17)

Since solar irradiation and temperature pose a non-linear characterization there-

fore SVM is highly suitable to estimate the voltage across MPP.

MPPT problem poses a regression task for SVM. The linear regression is repre-

sented using the Equation 2.18 as:

f(x) = (w.ϕ(x)) + b (2.18)

Where ϕ(x ) is column vector functions mapping the input sample data to the

higher dimensional feature space, w represents parameter column vector, and b is

the threshold from the low dimensional input feature space.

2.3.2.2 Artificial Neural Network (ANN)

With the development of artificial intelligence, a new field emerges which is called

Deep Learning (DL). No detailed system modeling is required by ANN based

intelligent techniques. By proper input-output mapping, ANN based techniques

can handle extremely complex problems [81],[82],[83],[84].

ANN uses the concept of neurons connectivity in the brain of the human body

similar to Figure 2.7. The structure of the human brain neuron is shown in Figure

2.7 (a) which is very similar to the structure of perceptron as shown in Figure 2.7

(b). ANN with hidden layers is shown in Figure 2.7 (cc). ANN typically consists

of three layers, that is, input, hidden, and output layer. The first layer takes

inputs and passes them to the next layer. The weights and biases are connected

that define the relation of the previous layer with the next layer. The weights

connected between the input and hidden layers are termed as w ij. The second

layer is called the hidden layer which originally maps the input with output.

M  aximize(m)  =
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Figure 2.7: General structure of ANN. (a) A biological neuron which inspired
ANN (b) Mathematical model of perceptron (c) Multilayer perceptron with all

layers associated with ANNs

There are two important factors in ANN:

� Learning Mode

� Activation Mode

Another important function in an ANN is the selection of an activation function.

This selection is mainly dependent upon whether the problem is classification

or regression. There are different types of activation functions, such as RELU,

sigmoid, and RBF.

The NN training can also be done using the data of I-V plots. The I pv and V pv

is fed to ANN with the duty cycle as the output. In this method, the dataset is

generated using conventional or swarm intelligence-based MPPT techniques. As

discussed above the input features of this dataset can be irradiance, temperature,

humidity, I pv, and V pv etc. and the class is the duty cycle d. With a proper

learning method and activation function, ANN gets trained on the given dataset

and a generated model is employed to track the MPP.

In literature, the most commonly used ML techniques utilize irradiance (G) and

temperature (T ) as input vectors but this technique includes system modeling. If
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the system parameters change, that is, the module configuration shading pattern

etc, then the ANN will not be able to perform accurately, and under such cases,

retraining of ANN would be required. However, research is being conducted to

implement ANN under PSC by training ANN under different shading conditions,

different modules, and different configurations.

Another technique is employed in which GRNN is trained by FFOA. In this

method, multiple shading patterns are considered and the dataset of current,

voltage and duty cycle is generated using FFOA. This technique also achieves

higher efficiency with less convergence time. Also, ANN trained with Genetic Al-

gorithm (GA-ANN) based hybrid technique is presented in the literature which

tracks GMPP with high efficiency. MPPT control structure of ANN is presented

in Figure 2.8.

Figure 2.8: ANN based MPPT Control Implementation

2.3.2.3 K-Nearest Neighbours (KNN)

Among several ML techniques, KNN is one of most simple and easy algorithm to

implement. Regardless of simplicity, KNN is highly effective for classification and

control applications. KNN is applicable to both classification and regression tasks.

KNN’s popularity in classification problems is exceedingly well known. Still KNN

is equally applicable to any regression problem.
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The first step is to calculate the distance between the new point and each training

point. Commonly known methods to calculate the distance: Euclidian, Manhattan

(for continuous) and Hamming distance (for categorical) are as follows:

� Eculidean Distance: The square root of the sum of the squared differences

between a new point (x ) and an old point (y) is used to compute Euclidean

distance (y).

� Manhattan Distance: This is the distance between two real vectors cal-

culated by adding their absolute differences.

� Hamming Distance: It is used to represent categorical variables. If the

values (x ) and (y) are the same, the distance D is equals to zero. Otherwise,

D equals one.

2.3.2.4 Multivariable Linear Regression (MLR)

MLR is a regression algorithm with one or more predictor variables that impact

the output response. It is frequently utilized in uncertain datasets or complex

large dataset learning challenges. If the response (Y ) has a linear relationship

with the predictors (x 1,x 2,... ,xm), MLR will be given by Equation 2.19:

Y = βo + β1x1 + . . .+ βkxo + ε (2.19)

Where β is a regression coefficient and ϵ is the training error E (ϵ) = 0.

The main goal is to get the anticipated coefficients by plugging the observation

values into Equation 2.20.

Y1 = βo + β1x11 + . . .+ βkx1k + ε1

Y2 = βo + β1x21 + . . .+ βkx2k + ε2

Y3 = βo + β1x31 + . . .+ βkx3k + ε3

(2.20)

MLR should be able to lower the LR model’s sum of squares.
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Q(β) =
n∑

i=1

εi2 =
n∑

i=1

(yi − βo − β1xi1 − . . .− βkxik)
2

(2.21)

The regression coefficient matrix is then given by:

β = (X ′X)
−1
X ′Y (2.22)

2.3.2.5 Boosted Tree (BoT)

ˆ

Figure 2.9: A general structure of BoT

BoT is a member of the ensemble family of algorithms. It is an approach that

combines a large number of infirm learners (tree) into a strong classifier. As seen

in Figure 2.9, this method employs many models to improve prediction accuracy.

It is mathematically expressed as

g(x) =
∑
t

wtyt(x) (2.23)

Where w is the weight in proportion to its accuracy and ĝ(x ) is the ensemble

output. Weight is given to each data sample after each iteration based on misclas-

sification. The aim is to reduce the objective function.

0f(x) =
∑
l

l (ĝi, gi) +
∑
t

Ω(ft) (2.24)
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Where l(ĝi,g i) is the loss function, which represents the difference between the

actual and predicted i th sample. Ω(ft) is regularization function, it corrects the

complex of the (ft) tree.

2.3.2.6 Performance Evaluation of Intelligent MPPT Techniques

Intelligent ML-based MPPT techniques are very efficient and achieve high ef-

ficiency under dynamic atmospheric conditions. These MPPT techniques are

system-dependent which increases the overall computation cost. The comparison

of intelligent MPPT techniques is presented in Table 2.2.

Table 2.2: Comparative Evaluation of Intelligent Techniques

Technology Advantage Disadvantage

SVM Eliminates ripples in the output
voltage

Low efficiency

ANN Highly efficient under PSC Large dataset required for
training purposes

KNN Simple and easy to implement Poor efficiency
MLR Fast tracking of GMPP In-efficient under PSC
Boosted
Tree

Accurate tracking of GMPP Complex calculations are re-
quired

2.3.3 Swarm Intelligence (SI) Based MPPT

SI algorithms use the behavior of animals or swarm to solve complex optimization

problems. In recent decades optimization algorithms are being used as MPPT

control techniques and they can effectively track the GMPP under dynamic en-

vironmental conditions using exploration and exploitation strategy by updating

the duty cycle. In this section different SI based MPPT based techniques are

discussed and at the end, an evaluation comparison is made [85]. The SI based

MPPT techniques discussed are listed below:

� Particle Swarm Optimization (PSO)
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� Particle Swarm Gravitational Search Optimization (PSOGSO)

� Fruit Fly Optimization (FFO)

� Salp Swarm Optimization (SSO)

2.3.3.1 Particle Swarm Optimization (PSO)

PSO [86],[87] is used for solving complex engineering problems. This algorithm

uses the concept of swarm intelligence. Its operation is based on the behavior of

flying birds and fish pools. These flock of birds (particles) search for the food

(global best) in a specific area (search space) and the birds update their position

in search of food according to the bird that finds the food. This method is applied

to engineering problems where particles update position and velocity using the

current best and global best position. PSO offers a variety of applications in the

engineering problems. Mathematically PSO is represented as

X(i+ 1) = X(i) + V (i) (2.25)

V (i) = W (V (i)) + C1 × r1 × (Pbest −X(i)) + C2 × r2 × (Gbest −X(i)) (2.26)

where x (i) is the current position x (i+1 ) is the next position. V (i) is the velocity.

W is the weight, C 1, and C 2 are the controlling parameters and r 1 and r 2 are

random numbers [88].

PSO can be used for MPPT control as well. In MPPT applications, the position of

the duty cycle is going to be updated using the PSO algorithm. First, the particles

or duty cycles are initialized in the search space, that is, between 0-100%. Then

power is checked at every particle which is known as the fitness of the duty cycle

[89].
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In literature, PSO is implemented as an MPPT in PV systems. There are differ-

ent variants of PSO which are proposed for tracking GMPP with high efficiency.

Due to random numbers in the velocity vector, oscillations are caused even after

achieving the GMPP which results in power losses. The effort is made to reduce the

oscillation by improvising the PSO and achieve high efficiency. Another technique

is presented which combines the PSO with INC. This hybrid technique achieves a

high efficiency >98.5% with a high tracking time during the initial stage. Another

effort is made which implements PSO on a low-cost controller.

2.3.3.2 Particle Swarm Gravitational Search Optimization (PSOGSO)

PSOGS is a popular heuristic technique used for optimization problems. PSOGS

has been incorporated with PSO. Equation of PSOGS is shown as

F d
k = G(z)

Mpt(z)×Mak(z)

Rk + ε
(xi

n(z)− xi
m(z)) (2.27)

Where G(t) is instantaneous gravity, M pt, M ak are active gravitation and passive

gravitation respectively. To avoid division by zero insertion of ε is necessary. (x i
n

(z )-x i
m (z )) gives distances of active agents’ positions. Instantaneous gravitational

constant is represented as

G(z) = Go × e
( α×iter
maxiter

) (2.28)

Where, Go is the initial value of gravity. α is the descending coefficient. Iter is

the current iteration, max iter is the maximum number of iterations. As a result,

the total force exerted on candidate l is given by

F d
l =

Nα∑
k=1,1̸=k

rkf
d
l (z) (2.29)

Where, rk is an arbitrary number in the d dimensional search space. Acceleration

is calculated as
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F =
m

a
a =

F

m
(2.30)

αd
l (t) =

F d
l (t)

Md
l (t)

(2.31)

dit+1
k = ditk −∆ditk (2.32)

∆dit+1
k = wditk + c1r1 × αd

l (t)× (Pbest − ditk ) + c2r2(Gbest − ditk ) (2.33)

2.3.3.3 Fruit Fly Optimization Algorithm (FFOA)

Figure  2.10:  Fruit  Flies  finding  target  food  iterative  process

FFOA  population  is  initiated  randomly  in  a  confined  region  bounded  by  I  mpp  and

V  mpp  (5%  to  95%).  Fitness  of  each  particles  depends  on  the  best  smell  and  best

value  stored  in  every  iteration.  F  best  is  depicted  visually  in  Figure  2.10.  It  shows

I-V  and  PV  curves  of  a  PS  system.  Randomly  initiated  population  does  figura-

tive  exploitation  and  exploration  in  individual  manner.  Movement  of  individual

particles  is  governed  by  its  velocity  vectors  and  smell  concentrations.  Smell  con-

centration  has  inverse  relation  with  distance  from  origin.  This  inverse  relationship

ensures  fast  initial  velocity  and  a  gradual  decrease  in  velocity  with  respect  to  it-

eration  number.  This  behavior  results  in  smoother  steady-state  convergence  of

particles  around  GM  with  highest  efficiency  and  least  power  loss  oscillations.  Step

by  step  working  of  FFOA  is  discussed  as  follows:
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Step 1: Define the location of the Fruit fly.

Xi = Xaxis + rand() (2.34)

Yi = Yaxis + rand() (2.35)

Step 2: Start the evolution by setting gen=0.

Step 3: Find D ist. After finding D ist, calculate smell intensification value S i.

Step 4: After getting the best indx value and using Equation 2.35, the fitness

function is defined as the maximum Output power V pv x I pv.

Xaxis = X(bestIndx) (2.36)

Yaxis = Y (bestIndx) (2.37)

2.3.3.4 Salp Swarm Optimization (SSO)

Salps are marine animals as seen in Figure 2.11 (a). Their mobility is accomplished

using water jet propulsion. They construct spiral-like chains for food discovery

and sustainability, as seen in Figure 2.11 (b). SSA was first introduced by [1] for

optimization purposes. Salp chains are comprised of a leader and followers.

The purpose of a heuristic algorithm in MPPT is to identify GM in its transient

state as quickly as feasible and to limit oscillations in the steady state around

GM to minimize power loss. SSA is used to optimize MPPT by taking these two

properties into consideration. In this approach, duty cycle represents the search

space, with values ranging from [0 to 1]. Equation 2.38 and Equation 2.39 are

used in order to update the location of leader and follower particles.
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Figure 2.11: (a) Single salp (b) Salp chain [1]

xi
j = Fi + ci ((ubj − lbj) c2 + lbj) c3 ≥ 0 (2.38)

xi
j = Fi + ci ((ubj − lbj) c2 − lbj) c3 ≤ 0 (2.39)

where x 1
j is the position of swarm leader, F j is the food position, ubj and l j are

upper and lower bound respectively. The weights c1,c2 and c3 are random num-

bers. Exploration increases convergence rate around MPP, whereas exploitation is

used to reduce power loss, hence the weight c1 becomes crucial to balance between

exploitation and exploration phenomenon is given by Equation 2.40.

c1 = 2e−(
4l
L )

2

(2.40)

Where L the total number of iterations, l is the current iteration, c1 and c2 are

randomly generated within the interval [0 to 1]. Position of follower particles is

updated by Equation 2.41.

xi
j =

1

2
αt2 + vot (2.41)

Where x i
j gives the position of ith particle in j th dimension. New Equation 2.42

is obtained to update follower particles positions.
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xi
j =

1

2
(xi

j + xi−1
j ) (2.42)

Where x i
j is the position of i th follower salp in j th dimension. Fitness function is

given by Equation 2.43.

fitness =
Pmax

Pavailables

(∣∣∣∣∣∣ iiter
maxiter

∣∣∣∣∣∣) (2.43)

2.3.3.5 Performance Evaluation of SI Based MPPT Techniques

SI based MPPT techniques effectively track GMPP under various environmental

conditions and low-cost hardware required, but the high settling time causes power

loss. The comparative analysis of SI-based MPPT techniques is shown in Table.

2.3.

Table 2.3: Comparative Analysis of Swarm Intelligent Techniques

Technology Advantage Disadvantage

PSO Performs well under PSC High Tracking time
PSOGS More efficient than PSO Low efficiency
FFOA High efficiency of upto about

99.5%
Costly hardware

SSO Quick and robust tracking of
GMPP

Oscillation around GMPP

2.3.4 Gap Analysis

Solar energy is one of most popular solutions for clean energy due to its zero

operational carbon footprint, low maintenance and it’s abundant nature. For

high-energy production, multiple solar panels are required in series/parallel com-

binations. However, in dynamic environmental conditions, such as non-uniform

irradiance and temperature on the solar panels, photovoltaic systems fall into the

category of PS condition. The control problem in PV systems is highly non-linear

and time sensitive.
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Conventional MPPT techniques such as P&O, INC, Mod-INC don’t have the

ability to distinguish between LM and GM, therefore they tend to get stuck in

the LM’s. Also, numerous oscillations around the MPP result in significant loss

of power.

Swarm intelligence-based MPPT techniques have the ability to solve the prob-

lems presented by the conventional techniques however, high tracking time, slow

convergence, low tracking efficiency, low power tracked and low extracted energy

makes them unstable for MPPT purposes.

Intelligent MPPT techniques. i.e. (Machine learning-based MPPT techniques) are

presented in the literature as well however these techniques are system dependent

and computationally very expensive. In order to mitigate the problems of earlier

mentioned techniques, a hybrid solution which uses a combination of SI and ML

based technique is proposed in this work. SI based technique helps to generate a

dataset consisting of duty cycle and corresponding values of voltage and curent

for different irradiances, upon which the Neural Network (NN) trains itself and

predicts the duty cycle with respect to MPP.

The research gap analysis shows three main areas of improvement. First is the

fast tracking of GM under dynamic operations. Second is the minimization of the

fluctuation in the initial phase of GM tracking and zero oscillation at the GM in a

steady state. The third objective is the utility of intelligent control to tackle PSC

and CPS problems. The proposed techniques fulfills all three objectives with high

responsiveness and robustness.

2.3.5 Problem Statement

The amount of electricity generated by a PV system is determined by the amount

of solar irradiation and the temperature conditions in which it is operated. The PV

panel current and voltage tend to vary without the MPPT controllers, which can

be dangerous for the PV panels. Solar irradiance non-uniformity causes numerous

power peaks in a PV curve, which are referred to as LMPP and GMPP. LMPP

becomes very critical for MPPT techniques as techniques tend to get stuck in
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LMPP or oscillate around GMPP, as a result, efficiency of the PV system is

significantly affected.

The tracking time, settling time, tracking efficiency, energy extraction, and im-

plementation cost, all factors into the choice of MPPT control mechanism. The

literature suggests that MPPT control approaches have a high tracking and set-

tling time, and low tracking efficiency. An intelligent technique which is a hybrid

of swarm intelligence and machine learning that can minimize such issues needs

to be implemented. ML algorithms are data hungry techniques and training on

large datasets consume a lot of computational power and time which makes these

techniques hard to use. Therefore the suggested MPPT control strategy should be

able to generate a smaller dataset and train itself on it while generating efficient

results.

For this purpose, GRNN trained with Sailfish Optimizer, i.e. a hybrid MPPT

technique has been presented in this work. GRNN-SFO has the ability to generate

a dataset of duty cycle, voltage and current, train itself. GRNN-SFO is quick, easy

to implement, and offers magnificent power tracking capability.

2.3.6 Chapter Summary

This chapter provides an in-depth overview of MPPT techniques. Conventional

MPPT techniques include FOCV, FSCC, P&O, and INC. Conventional MPPT

techniques perform better under uniform irradiance conditions. P&O offers simple

implementation, however the oscillations around the MPP is the major drawback

of the P&O. INC reduces ripples at the MPP however under PSC, conventional

MPPT techniques do not perform well and are unable to differentiate between

GMPP and LMPP.

SI based techniques namely PSO, PSOGS, FFA, and SSO have a good ability to

track the GMPP however slow convergence, high tracking and settling time makes

them inadequate for tracking MPP under PS Conditions.
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Intelligent MPPT techniques are presented which include ANN, SVM, KNN, BoT

and MVR. These techniques perform with high efficiency under PS Conditions

but high training data and high computational power is required for the imple-

mentation of these techniques which makes them difficult to use for MPPT. As a

solution, bio-inspired metaheuristic optimization algorithms are proposed for the

MPPT which perform with higher efficiency and takes less computational power

for MPPT implementation.



Chapter 3

Proposed Technique(s) and

Implementation

This chapter deals with the mathematical model and characteristics of the PV sys-

tem components in detail. The purpose of this chapter is to discuss the hardware

components and proposed machine learning algorithm, optimization algorithm,

and PV system integration as MPPT control.

3.1 PhotoVoltaic (PV) System and its Compo-

nents

A standalone PV system, as seen in Figure 3.1, is made up of the following com-

ponents:

� PV module

� Boost Converter

� MPPT control

� Load

44
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Figure 3.1: Components of a typical Photo-Voltaic (PV) system consisting of
PV panels, load interface, controller and load

Load interfacing and control application is provided by the DC boost converter in

this section. Current and voltage is fed into the MPPT controller which calculates

PV power by product of current and voltage. The stabilized output power depends

upon the efficient design of boost converter’s components, that is, inductor, ca-

pacitors, and frequency of switching. The microcontroller generates PWM signal

given to MOSFET driver and controls the voltage of the PV panel.

3.1.1 Boost Converter

Since DC power is transferred to the load via converter or inverter circuits therefore

efficiency plays a critical role in PV systems. Among numerous DC converter

topologies discussed in the literature, the DC-DC boost converter [90] is preferred

because the output voltage greater than the input voltage reduces heat dissipation

losses in this converter.

The simulation and practical implementation has been done using boost converter

in this thesis. The relationship of duty cycle is given in Equation 3.1. Figure 3.2

depicts an example of a boost converter.

D =
Ton

Tsw

(3.1)
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where T sw is the switching time, D is the duty cycle, T on is the switch on time,

T off switch off time.

Figure 3.2: MPPT control using Boost Converter

3.1.1.1 Mathematical Model of Boost Converter

The mathematical modeling provides design of circuit components using mathe-

matical correlations. The output voltage is dependent upon the variation in duty

cycle, which varies between 0%-100%. The input capacitor (C in) is dependent

upon switching frequency and current ripples whereas the output capacitor (C out)

depends upon the duty cycle. Inductor is an important component whose design

depends upon the PV voltage range and ripple tolerances. The inductor controls

the current ripples at the output. The design of all the components depends upon

the following equations

Cin =
∆Id

8∆Vdfsw
(3.2)

Cout =
IoD

8∆Vdfsw
(3.3)

L =
VPVD

2∆Idfsw
(3.4)
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Components Values

Where  C  in  is  the  input  capacitor,  C  out  is  the  output  capacitor,  I  out  is  the  output 

current,  D  is  the  duty  cycle,  V  P  V  is  the  voltage  of  photovoltaic  system,  L  is  the 

inductance,  δI  d  and  δV  d  are  the  ripples  of  current  and  voltage.  The  switching 

frequency  is  represented  by  f  sw.

3.1.1.2  Boost  Converter  Application  for  MPPT

PV  system  differs  from  conventional  energy  sources  mainly  due  to  storage  issues

unlike  hydro  power,  and  chemical  energy.  Therefore  continuous  extraction  of  power

is  required  which  is  done  by  interfacing  DC-DC  converter  between  PV  panel  and

load.  In  order  to  maximize  the  power  transferred  to  load  from  the  PV  module,

the  maximum  power  transfer  theorem  is  applied  which  states  that  the  maximum

efficiency  is  achieved  when  resistive  mismatch  is  equal  to  zero  between  the  load

and  the  power  source.  If  the  load  resistance  at  the  PV  panel  is  kept  at  maximum

power  then  the  change  in  environmental  conditions  will  affect  the  operating  point.

Therefore  maximum  power  will  not  be  delivered  to  the  load.  The  resistance  of

load  and  boost  converter  will  change  the  duty  cycle  and  will  be  maintained  at

that  value  where  maximum  power  is  delivered  to  the  load.

This  load  variation  capability  provided  by  the  boost  converter  is  very  effective

[91].

Table  3.1:  Specification  of  Electrical  Components  used  in  Simulation

PPaanneell  PPoowweerr  300  W

IInndduuccttoorr  1.4  mH

CCaappaacciittoorr  aatt  iinnppuutt,,  CCiinn  10  uF

CCaappaacciittoorr  aatt  oouuttppuutt,,  CCoouutt  470  uF

FFrreeqquueennccyy  ooff  sswwiittcchhiinngg,,  ff  50  kHz

RReessiissttiivvee  llooaadd,,  RRLL  70  Ω
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The equivalent resistance is given by Equation 3.5 as

Req =
Vo

Io
= V

(1−D)2

Io
= R(1−D)2 (3.5)

Where Req is the equivalent resistance, R is the resistance, I o is the output current,

D is the duty cycle, and V o is the output voltage.

The change in resistance is dependent on the change in duty cycle when R is kept

constant. Change in the load resistance, or in environmental conditions will be

catered for by the MPPT control technique by continuously monitoring the power

of the PV panel. Table 3.1. provides DC converter design parameters.

3.1.2 MPPT Controller

Photovoltaic power generation is dependent upon manufacturing technology, weather

conditions, irradiance, temperature, and configuration schemes. Photovoltaic are

used in commercial scale solar parks and standalone PV systems. However PS

reduces the efficiency of PV systems, therefore modern MPPT control is focused

on minimizing these affects [92]. MPPT techniques can be classified into

� Offline control techniques (Classical)

� Online control techniques (Classical/Intelligent)

� Hybrid of classic-intelligent methods

The offline techniques use mathematical relationships among the operating condi-

tions and optimum operating point. The output power is estimated and random

duty cycle values are calculated. The limitations arise when irradiance or oper-

ating temperature changes significantly. Studies show that there are no real time

adjustments to the operating conditions. As a solution, online methods, such as,

P&O measure the instantaneous power and adjust the control signals accordingly

in order to increase the output and minimize the mismatching between load and
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power generation. Hence effective decision-making enhances the output power

[93].

Although these approaches are useful for tracking MPPT, there are several issues

that cannot be overcome, such as numerous power points, steady-state inaccura-

cies, and oscillations. Although heuristic algorithms such as PSO and PSOGS are

successful in identifying GM, the time required to track the MPP and transients

in the power curve are major drawbacks with these methods.

Advanced approaches are employed in hybrid MPPT models to maximize PV

outputs. To efficiently use power management controllers with renewable energy

resources, creating a control for MPPT must consider computing power, cost,

efficiency, and complexity. After getting the design parameters, we go into the

designing phase.

The real-time changes in electrical characteristics of PV system due to resistances,

temperature, irradiance or resistive load makes the system least deterministic

which is well accommodated by optimization algorithm because it can handle

less accurate modeling of the nonlinear base system. The current source model

and diode action are well suited for offline methods where variation in operations

is very limited. Mainly fixed duty cycle, MPP locus Characterization, P&O and

INC are utilized [93].

The progress in intelligent systems and nature-inspired optimization algorithms

has enabled MPPT control techniques to deal with hot spot affects, non-uniformity,

changing temperature hikes, PS, and failure to reach GMPP all of which affect

the power of a PV system. A standard PID controller is applicable for control

action in combination with conventional techniques to adaptively accommodate

the step size to reduce the oscillations around GMPP. It not only enhances the

steady-state and transient response but also lowers the undesired fluctuations at

GMPP. However, conventional techniques are still unable to deal with CPS and

PS problems. Therefore hybrid models are more valuable.

A hybrid model is enforced using two major steps. Firstly GRNN, GA, Fuzzy,

or ANN is integrated with classical controller for the desired outcome. In second
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step optimized parameters after extensive training are exported for online control

action.

3.1.3 Load

An electrical load is a portion of a circuit that consumes active electrical power. A

load of a PV system can be AC or DC. Therefore certain predefined criteria should

be met before connecting the load to PV system supply. DC load compensation

is simpler but the AC load increases the design complexity. Since grid-connected

inverters pump electricity into the grid, they are expected to maintain very high

power quality to ensure that acceptable power flows into the grid. As a result,

inverters should have a very low harmonic content of line currents. Grid-connected

inverters are also supposed to have active islanding detection capabilities, accord-

ing to IEEE 1547 [94].

Modern PV systems in building integrated environment require inverter interfac-

ing. In grid-tied setup, islanding affect may occur. This islanding causes safety

concerns and therefore, anti-islanding capability is needed in inverters.

3.2 Proposed Technique(s)

In this work, a General Regression Neural Network has been proposed in order to

track the MPP under changing environmental conditions, i.e. fast changing uni-

form irradiance, PS, and CPS. Also, Radial Basis Function Neural Network has

been implemented in this work since both GRNN and RBFN belong to the same

category of NN’s. Therefore in order to analyze the performance of GRNN prop-

erly, RBFN has also been trained under same conditions. Sailfish Optimization

Algorithm has also been proposed in this work.

The general flow of the proposed techniques is respreented in Fig. 3.3. The purpose

of SFO is to generate a dataset and tune the hyperparameter of both NN’s.
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Figure 3.3: Block diagram representing the flow of the proposed MPPT tech-
nique.

In general, SFO algorithm is used to generate a dataset on which NN’s are going to

train themselves upon. Since, MPP is varied by varying the duty cycle of the boost

converter, therefore this dataset consists of duty cycle as the output and voltage

and current as its features. After the dataset generation, GRNN and RBFN is

trained and tuned using the same SFO algorithm. Finally, both of the NN’s are

tested under different environmental conditions.

3.2.1 Machine Learning Algorithms

Two machine learning based algorithms have been implemented in this work.

� General Regression Neural Network (GRNN)

� Radial Basis Function Network (RBFN)

3.2.1.1 General Regression Neural Network (GRNN)

One of the most common neural network is GRNN, which is a form of super-

vised Feed Forward Neural Network (FFNN). GRNNs are famous for their abil-

ity to train themselves quickly on sparse data sets. GRNN networks can be

trained quickly because the data only needs to propagate forward once, unlike

most Back Propagation Neural Networks (BPNN), which may need to propagate

data forward and backward multiple times before finding an acceptable error[13],

[14],[16],[15],[17],[18].
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Interpolation problems are well-suited for GRNNs. As with standard regression

approaches, GRNN is used to estimate continuous variables. It employs a single

smoothing parameter (σ) that has been fine-tuned for optimal learning.

Given an input vector x, it returns the most likely scalar Y. Let f(x,y) be the

continuous probability density function of a vector and a scalar random variable,

respectively. Let x be a particular random X measured value. The conditional

mean of Y given x (also known as regression of T given x is given by:

E [Y/X] =

∞∫
−∞

Y · f(Y/x)dy

∞∫
−∞

Y · f(x, Y )dy

∞∫
−∞

f(x, Y )dy

(3.6)

The key benefit of GRNN is that it has high convergence and only takes a few

data samples to train. GRNN is separated into four levels, as seen in Figure 3.4.

GRNN primarily analyses linear or non-linear regression on an input vector and

produces the output represented by Equation 3.11

K2
j = (x− xj)

T (x− xj) (3.7)

Yj = e−
(x−xj)

T
(x−xj)

2σ2 (3.8)

Sw =
∑
j=1

wjYj Sδ =
∑
j=1

Yj (3.9)

The  regression  is  parametric  if  the  connection  between  independent  (X)  and  de-

pendent  (Y)  variables  is  described  in  a  functional  form  with  parameters.  The 

nonparametric  estimate  approach  will  be  utilized  because  there  is  no  real  knowl-

edge  of  the  functional  form  between  x  and  y.  Gaussian  function  is  used  as  one  of 

the  consistent  estimators  for  a  nonparametric  estimate  of  f(x,y).
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Y =
Sw

Sδ

(3.10)

Y (x) =

m∑
j=1

wje

(
K2

j

2σ2

)

m∑
j=1

e

(
K2

j

2σ2

)
(3.11)

The input layer of a GRNN is entirely connected to the second layer and is known

as the first layer.

The first concealed layer is the second layer (also called the pattern layer). This

layer is made up of N processing components or nodes, where N is the number

of samples in a training data set and each node represents the input vector, X i,

that is connected with the j th sample in the training data set. Each input vector

is subtracted from the node’s allocated vector, X j. The node then squares this

difference. The summing units receive the outputs from the pattern units.

It should be noted that the output layer always contains one more node than the

second hidden layer. When you require a multidimensional (vector) output, all

you have to do is add one more node to the second hidden layer, as well as one

more node in the output layer for each member in the output vector.

The third layer is known as the summation layer, which consists of two nodes.The

sum of the first hidden layer activations equals the second node’s input. In Equa-

tion 3.7 and Equation 3.8 the term K 2
j is the distance between the predicted sample

and the trained sample x is referred to as the input vector for GRNN, x j is the

trained vector for the pattern layer. The pattern layer neuron is defined in terms

of Gaussian function Y j in Equation (3.10). The term w j refers to the weight of

neuron (j) in the pattern layer connected with the summation layer. Arith-

metic summation S δ and the weighted summation Sm represent the arithmetic

and weighted sums of the inputs in the summation layer respectively. The only

parameter which needs to be learned is the variance σ of the basis function.
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Figure 3.4: The structure of GRNN comprising of four layers, i.e. input,
pattern, summation and output layer respectively.

3.2.1.2 Radial Basis Function Network (RBFN)

RBFNN is a popular alternative to Feed Forward Back Propagation Neural Net-

work (FFBPNN), which was presented by Broomhead and Lowe in 1988. The

weights and activation of a transfer function F provided for the units determine

the network’s behavior. The output of a processing node is determined by acti-

vation functions, which are mathematical formulas. By applying F to the output

value, the activation function maps the sum of weighted values provided to them,

which is then ”fired” onto the next layer.

Linear function (LF), Threshold function (TF), Sigmoid Function (SF), and Radial

Basis Function (RBF) are the four types of transfer or activation functions. RBFs

are a type of activation function that consists of a collection of basis functions, one

for each data set. RBF takes the following broad form as depicted in Equation

3.12.

G (∥X − u∥)
(3.12)

where G is a nonlinear symmetric radial function (kernel); X is the input pattern;

and µ is the function’s centre. RBF’s output is also symmetric about the related
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centre, which is a significant feature. As a result, f (x i) can be considered a linear

combination of all the basis functions’ outputs.

f(x) =
n∑

i=1

wiG (∥X − u∥) (3.13)

There are several common types of radial basis functions as represented in Table

3.2.

Table 3.2: List of Common RBF’s

Symbol Description

Thin Plate Spline G(x) = (x− µ)2 log(x− µ)

Multiquadric G(x) =
√

(x− µ)2 + σ2

Inverse Multiquadric G(x) = 1√
(x−µ)2+σ2

Gaussian G(x) = 1
σ
√
2π
e−(x−µ)2/2σ2

µ and σ2 are the function parameters which represent center and radius. A Gaus-

sian function, often known as a ”bell-shaped curve” or normal distribution, is the

most prevalent kind of RBF. It may be used to generalize a global mapping as well

as fine-tune local features. Since the Gaussian function has a more local effect,

it is more physiologically acceptable than other functions. RBF differs from the

others such that it decreases monotonically with distance from the center, gener-

ating the well-known bell-shaped curve that converts high values into low values

and mid-range values into high ones. Figure 3.2.1.2 depicts the plot of a Gaussian

function.

Gaussian function is mathematically represented as

f(t) =
1√
2πσ2

e−(
t−u

2σ2 ) (3.14)

Where t is the current value of input.
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Figure 3.5: Illustration of Gaussian Function

u = E(T ) =

∞∫
−∞

x · f(t)d(t) (3.15)

σ2 = E(T − u)2 =

∞∫
−∞

x · (t− u)2 · f(t)d(t) (3.16)

where µ is the distribution’s mean (center) and σ2 is the variance of the distribution

(width or radius).

We may get the universal Gaussian probability density by extending Equation

3.16 to multiple dimensions:

f(t) =
1

(2π)
p/2

e

(
− 1

2
(t−u)K

∑
−1

(t−u)

)
(3.17)

where p is the number of dimensions, and µ is the mean p-dimensional vector.

RBFs are effective for estimating functions and recognizing patterns [24] and can

be used to solve situations where the input data is distorted by additive noise.

The output layer has a single neuron with a node yk which generates the control

signal d with an activation function as shown in Figure .
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Figure 3.6: Extended diagram illustrating the architecture of RBFN with
hidden functions

The distance between the input vector and a prototype vector determines the

activation function of the hidden unit in the RBFN feed-forward NN model. The

controller that creates the duty cycle for the PV system’s converter is built using

RBFN. The proposed RBFN has three layers: an input layer, a concealed layer,

and an output layer. Voltage and current are fed to the input layer whereas the

output of the NN is duty cycle d. The net input and output data are sent to the

next layer by the input layer.

xk(z) = netk (3.18)

yk(z) = fk [netk(z)] = netk(z), k = 1, 2 (3.19)

netk(z) = −(x−Mj)
T
∑
j

(x−Mj) (3.20)

yj(z) = fj[netj(z)]2e
(netj(z))j = 1, 2 (3.21)
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3.2.2.1 SFO: Inspiration

The most prominent social behavior in hordes of mammals is group hunting. The

group efforts of predators reduces the energy consumption, efforts and increases

the chances to kill the prey comparatively. Some animals aim to kill their prey with

little or no coordination of attack, but others devise intricate hunting techniques.

The hunting process has evolved over millions of years.

This strategy helps to conserve energy. SF alternate their attacks on schooling

sardine prey. Figure 3.7 shows each behavioral state of SF’s group hunting. SF

being the fastest ocean creature can reach speeds of upto 100 km/h. The prey such

as sardines are pushed towards the surface (Figure 3.7 A, B). The maneuverability

of sardines is challenging for SF (Figure 3.7 C). SF attacks to injure several sardines

or tap a single sardine (Figure 3.7 D). Since SF acceleration is higher as compared

to sardines, sardines cannot outswim the SF to avoid being captured. A segregated

sardine can be easily captured (Figure 3.7 E).

SF fin and body rigidity helps to hunt the prey quickly (Figure 3.7 F). To avoid

injury the SF use color changes to indicate attack modes. The attacking behavior

of SFO can be mathematically used as an optimization algorithm.

3.2.2

where  x  k  is  the  input  layer,  net  k  is  the  sum  of  the  input  layer  and  y  i  is  the  hidden 

layer  with  node  k.  The  hidden  layer  consisting  of  neurons  uses  Gaussian  functions

as  a  membership  function  for  each  node  in  RBFN.

SFO  algorithm  is  inspired  by  natural  behavior  of  sailfish  in  the  wildlife.  In  this

section  a  detailed  mathematical  model  is  provided  [95].

Sailfish  Optimzer  (SFO)
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Figure 3.7: Sail Fish Hunting Behavior

3.2.2.2 SFO: Initialization

SFO is a meta-heuristic algorithm based upon population evolution over time.

Each SF represents a candidate solution. The position of sailfish in the search

space are the parameters to be optimized. The initial population is initiated

randomly over the solution search space. In a d-dimensional search space, the i th

member at the k th search has a current position SF i,k ϵR (i=1,2,...,m).

3.2.2.3 SFO: Elitism

The position of search agents in the space is updated periodically during which

good solution may be lost. Elitist selection is employed to minimize this loss. It is

done by transferring the best solutions in the next iteration. The best position of

SF is saved and transferred as an elite solution. In each iteration the position of

injured sardine is also preserved as the best target for cooperative hunting strategy

representing the highest fitness at i th iteration as x i
eliteSF

and x i
injuredSF

respec-

tively. This scheme is useful to avoid repeated exploration and avoid discarded

solutions.
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3.2.2.4 SFO: Attack Alteration Strategy

The SF attack the prey one after the other to avoid injuries and enhanced effi-

ciency. This strategy promotes the rate of success using well organized coordinated

attack. The herding prey adjusts their position according to the location of preda-

tor SF. The SFO algorithm mimics attack-alteration strategy of SF. As illustrated

in Figure 3.6, the SF searches a wide section of the search space during the ex-

ploration phase to locate the best alternatives for further refining. The SF do not

attack haphazardly. They can attack in particular directions while continuing to

shrinking the attack circle. SF update their hunting position according to the best

probability of success around the prey fish pool. In SFO algorithm, the updated

SF position denoted by x i
newSF

is calculated using Equation 3.22 as

X i
new SF = X i

elite SF − λi × (rand [0, 1])×
X i

new SF +X i
injured s

2

)
(3.22)

where x i
eliteSF

is the elite sailfish position that has been formed up to this point,

X i
injureds

calculates the injured sardine position recorded so far. x i
oldSF

is the

current SF position, rand [0,1] is the random number, λi is the coefficient at the

i th iteration that is generated as follows

PD = 1−
(

NSF

NSF +NS

)
(3.23)

where N SF and N SF are the number of sailfish and number of sardines respectively.

The value of λ influences the position of SF around prey. λ parameter will be 1

when rand [0,1]>0.5 while it tends to be -1 when rand[0,1]<0.5 and will go to zero

if rand[0,1]=0.5. Fluctuations of λ and new position devise the divergence of SF

while iteratively converging towards the globally best solution while maximizing

the exploration process.



Proposed Technique 61

3.2.2.5 SFO: Hunting and Catching Prey

During the start of group hunting, the prey is seldom killed. In 95% of the cases,

the prey, that is, sardines only suffer from scales loss and injuries. Initially the

prey and predators have high energy levels for hunting and escaping. Sardines

show high mobility and escape agility. Gradually this process slows down as both

prey and predator’s energy drops. The sardine lose the sense of directional attack

loosing escape maneuverability.

Figure 3.8: Swimming Sailfish around the prey school in the search space

Figure 3.9: Slashing the prey school by Sailfish and update the position of
sardines in the search space
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Prey hit by SF’s, break off the prey from the school. This behavior is mimicked

as attack power of SF that is obliged by the position of the SF and sardine. The

updated position of sardine x i
news

in new iteration is given by Equation 3.24.

X i
new s = r ×

(
X i

new s −X i
old s + AP

)
(3.24)

where X i
eliteSF

is the best position of the elite sailfish formed.X i
olds

is the current

position of the sardine. r is a random number between 0 and 1 and the AP shows

the amount of sailfish attack power which can be calculated as

AP = A× (1− (2× Itr × ε)) (3.25)

where A and ϵ are the coefficients for decreasing the value of power attack linearly

from A to 0. Using AP, α number of prey update their location and the number

of variables β.

α = NS × AP (3.26)

β = di × AP (3.27)

where N s is the number of sardines in each cycle and d i is the number of variables

at the i th iteration. According to AP parameter, if the intensity of the sailfish’s tap

is low. such as AP¡0.5, only α sardines with β variables will be updated. However

if the sailfish’s tap is high such as AP≥0.5, then the position of all sardines will

be updated. Basically AP and r parameters assist SFO in order to show a more

random behavior throughout optimization.

The position of wounded prey must be taken into account to maximize the likeli-

hood of hunting the new prey. This is achieved using the position of sardines and

is shown by Equation 3.28.
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X i
SF = X i

S; iff(Si) < f(SFi) (3.28)

where X i
s is the current position of the sardine and X i

SF represents the current

position of the sailfish.

Dataset  Generation  using  Proposed  SFO  Algorithm3.2.3

Since  MPPT  problem  is  the  problem  of  regression,  that  means  there  is  going  to  be

only  one  value  in  the  output.  In  this  work,  we  are  interested  in  calculating  the  value

of  duty  cycle,  since  by  varying  the  value  of  duty  cycle  of  the  boost  converter,  the

operating  point  of  PV  array  can  be  changed  accordingly.  Therefore,  the  output

value  of  the  dataset  is  duty  cycle.  The  output  of  the  PV  panel  is  voltage  and

current.  These  values  are  then  used  as  an  input  to  the  MPPT  controller,  therefore

the  input  features  of  the  NN’s  are  voltage  and  current,  against  which  the  value  of

duty  cycle  is  being  predicted.

For  dataset  generation,  for  each  case  of  environmental  condition,  i.e.  fast  changing

uniform  irradiance,  PS  and  CPS,  random  sets  of  duty  cycles  are  initialized.  In  this

work,  4  random  duty  cycles  are  used  as  shown  in  Fig.  3.10  (a).  For  different  values

of  irradiances,  i.e.  100  KW

  m2  to  1000
KW

m2  experiments  has  been  conducted.  For  each

value  of  irradiance,  different  values  of  duty  cycles  are  updated  using  the  Equation

3.24  and  Equation  3.25  of  SFO.  In  this  work,  the  tuning  parameter  of  SFO,

i.e.  the  value  of  iter,  which  represents  the  number  of  iterations,  has  been  selected 

to  be  10.

In  10  iterations,  all  4  values  duty  cycles  update  their  positions  as  shown  in 

Figure  3.10  (b)  and  finally  reach  the  GMPP  as  shown  in  Figure  3.10  (c).  This 

process  is  repeated  for  10  different  values  of  irradiances  while  keeping 

temperature  at  STC.

i.e.25  o.  Since  boost  converter  requires  up  to  20ms  to  settle  at  any  given  value  of 

duty  cycle,  therefore  each  value  of  duty  cycle  is  used  for  up  to  20ms  and  value 

against  each  duty  is  stored  after  every  2.5ms.  Therefore  after  10  iterations  and  10 

different  values  of  irradiances  we  get  3200  samples.



Proposed Technique 64

Figure 3.10: Duty cycle updation during several iterations under differnt
environmental conditions

3.2.4 Training and Tuning of GRNN and RBFN

Figure 3.11 represents the flowchart showing the training of GRNN and RBFN.

Since σ is the only free parameter in GRNN and RBFN and suitable values of

it will improve the NN’s accuracy, it should be estimated. GRNN and RBFN use

gaussian activation function in their hidden layers therefore width of this activation

function is very critical in generating a best fit model for both the NNs.

The  value  of  σ,  i.e.  the  spread  factor  can  be  set  to  0.01  to  1.  Figure  

3.12  shows  shape  of  gaussian  activation  function  for  different  values  of  σ.  A

small  value  of  σ  as  means  that  the  model  is  going  to  underfit  the  training

data  as  shown  in  Figure  3.13  (a),  where  as  a  large  of  σ,  means  that  the  model  is

going  to  overfit  the  training data  as  shown  in  Figure  3.13  (c).

Using  an  ideal  σ  value  is  critical  in  order  to  obtain  the  best  fit  model,  as

demonstrated  in  Figure.  3.13  (b).  Since  there  is  no  ideal  analytical  solution  for

determining  σ,  numerical  methods  can  be  employed  to  approximate  it.  One  of  

the  used  technique  is  the  holdout  method.  In  this  technique,  samples  are

deleted  at  random  from  the  training  dataset;  next,  using  the  GRNN  with  a

fixed  σ,  the  output  is  computed  using  the  removed  samples;  and  finally,  the

error  between  the  network  outputs  and  the  sample  targets  is  obtained.

This  technique  is repeated  for  various  σ  values.  chosen.
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Figure 3.11: Flowchart of training of GRNN and RBFN using SFO

Different search and optimization strategies has also been used to find (σ). Genetic

algorithms (GA) and differential evolution (DE), for example, are viable solutions.

In this work, SFO has been proposed for proper tuning of σ. The value of σ is

adjusted such that random values of σ are initialized (50 in this case), and NN’s

are trained on each of those values. Training errors are then calculated and each

value of σ is updated for about 10 iterations. After 10 iterations an optimal value

of σ is returned which in this case is 0.6.



Proposed Technique 66

Figure 3.12: Variation in the widh of gaussian activation functions depending
on values of β

Figure 3.13: (a) Underfitted model (b) Best fit model (c) Overfitted model

In order to train the neural network, inputs with defined outputs are required.

A neural network is trained with two inputs defined as X i=V pvh and X 2=I pvh.

Input vectors are just a way on the GRNN’s input layer and the distance required

for recording the pattern is obtained using the pattern node of the pattern layer.

The number of neurons of pattern layer are dependant on number of input samples

which in this case is 3200. Therefore pattern layer of GRNN consists of 3200
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neurons. The number of neurons in summation layer are dependat upon the

nmumber of neurons in the outer layer. Summation layer contains one more neuron

than the outer layer. Since MPPT problem in this work is a problem of regression

which means that there will be only one neuron in the outer layer, there the

summation layers consists of 2 neurons. The structure of GRNN used in this work

is illustrated in the Figure 3.14.

Figure 3.14: Structure of GRNN used in the proposed technique

RBFN consists of 3 layers. The hidden layer contains gaussian activation function.

For selection of number of neurons in the hidden layer in RBFN, there are two

possible approaches. The first approach is to use randomly k prototypes from the

training data.

Given enough RBF neurons, an RBFN can define any arbitrarily complex decision

boundary. In other words, you can always improve its accuracy by using more

RBF neurons.

However, more neurons means more computation time, so it’s ideal if we can

achieve good accuracy using as few RBF neurons as possible. One of the ap-

proaches for making an intelligent selection of prototypes is to perform k-Means

clustering on your training set and to use the cluster centers as the prototypes.



Proposed Technique 68

Figure 3.15: Structure of RBFN used in the proposed technique

The number of neurons used in this work are 400 which are selected using K-means

clustering. The structure of RBFN used in this work is depicted in Figure 3.15.

3.2.5 Model Evaluation of GRNN and RBFN

ML algorithms typically work in three phases; training, validation and testing

phases. After the training phase is completed it moves to the validation. A new

set of data is used during the first pass. If the results are satisfactory, move on to

the testing stage. If not, it’s a good idea to let the machine learning program run

through the data again until no new patterns emerge or the maximum number

of passes has reached. As training progresses, the ML algorithm or whoever is in

charge of it automatically modifies the parameters.

The testing stage is a ”final phase” against a new batch of data, but without

the ”assist” data labels (for supervised learning only). It’s a working model if the

algorithm satisfies the success criterion test. If not, it’s back to the drawing board.

AI machine learning is a rerun of ML software exposure to data, with parameters

updated repeatedly by the ML software (and maybe by humans) to improve the
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model after each pass of the data. ML software continues to run several runs over

the data until it detects no new patterns or reaches its maximum number of passes,

at which point it stops.

To evaluate the efficiency of GRNN and RBFN, the dataset has been split into

70-30 ratio. 70% of the data has been used for training the models, and 30 percent

of the data is used for testing of the models. Since total number of samples used

in this work are 3200, therefore 2240 samples are taken into account for training

purposes whereas 960 samples are being used for testing of the models.

3.2.6 Tracking Mechanism of Proposed Technique

Figure 3.16: Tracking Mechanism of GRNN-SFO (General Regression Neural
Network-Sail Fish Optimizer) (a) Power Fluctuations (b) Summary of GRNN-
SFO during exploration phase (c) Reference voltage computed by GRNN-SFO

The tracking mechanism of GRNN-SFO is presented in Figure 3.16. Power tran-

sients during tracking of GM are shown in Figure 3.16 (a) whereas the prediction

of duty cycle against V pv and I pv of PV panel is shown in Figure 3.16 (b). The

reference voltage computed by GRNN-SFO is shown in Figure 3.16 (c). As V pv

increases, the predicted duty cycles moves toward the GM. GRNN-SFO predicts

the duty cycle according to the behavior of V pv. At 130ms all the predicted duty

cycles reach GM and are stabilized.
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Figure 3.17: Tracking Mechanism of RBFN-SFO (Radial Basis Function
Network-Sail Fish Optimizer) ) (a) Power Fluctuations (b) Summary of RBF-
SFO during exploration phase (c) Reference voltage computed by RBF-SFO

In the similar manner, the tracking mechanism of RBFN-SFO is presented in

Figure 3.17. The power transients during tracking of GM are illustrated in Figure

3.17 (a) whereas the prediction of duty cycle against V pv and I pv of PV panel is

shown in Figure3.17 (b). The reference voltage computed by RBFN-SFO is shown

in Figure 3.17 (c). As V pv increases, the predicted duty cycles move toward the

GM. RBFN-SFO predicts the duty cycle according to the behavior of V pv.

3.2.7 Proposed Technique Under CPS

When large numbers of PV modules undergo PS, several closely linked peaks are

formed. This type of shading is known as complex PS. Cluster is the collection of

local peaks and the Cluster Head Maxima (CHM). In Figure 3.18, CPS condition

is shown. Cluster-1 exists in left half plane of PV curve which contains three

MPPs. CHM occurs at the center. The global maxima which is just 17W less

from cluster 1 has a close value with other MPPs in cluster 2.

In the last iterations, velocity vectors deliberately retard the movement of the

particles. For better convergence and less oscillations, in the last iterative cycles,

slower movement of particles is suitable. Around 6% power loss occurs in complex

PS due to undetected GM. The loss becomes prominent due to non-proper tuning
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of swarm based intelligence techniques. These techniques are effective when the

GM is in the center but the problem becomes more prominent as the GMPP is

tilted from the center. Using a large number of particles is a common approach

to overcome the previously mentioned issue however this approach increases the

resources to compute the social interaction. Therefore reduced ranged applica-

tions, complexity, and cost are the side effects. GRNN-SFO effectively deals with

these issues by increasing the exploration phase and has a slow movement as the

iterations increase in order to reduce the oscillations and track GMPP effectively.

Figure 3.18: Complex partial shading with cluster formation denoting a very
small difference between GMPP and LMPP

3.3 Chapter Summary

In this chapter, the components of the PV system from the converter to the load

are discussed in detail. Also the proposed meta-heuristic algorithm, that is, SFO

is explained. In addition, the Machine learning algorithms such as Generalized

Regression Neural Network (GRNN) and Radial Basis Function Neural Network

(RBFNN) are specified. SFO helps to generate a dataset of current and voltage

over wide range of irradiance levels and at STC upon which GRNN and RBFN are

trained to predict the duty cycle for MPPT. The tuning of GRNN and RBFNN

is a great challenge which is also done using the proposed SFO. The other impor-

tant thing to check is the working of the proposed technique under PSC and the

proposed GRNN-SFO performs excellently under PSC.
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Simulation and Results

In this chapter, a Machine Learning based technique for MPPT control is pre-

sented under uniform irradiance condition, PS condition (PS), and complex PS

condition (CPS). GRNN trained with Sailfish Optimizer (GRNN-SFO) is com-

pared with GRNN trained with Perturb and Observe (GRNN-P&O) and Particle

Swarm Optimization (GRNN-PSO), Radial Basis Function Network trained with

Sail Fish Optimizer (RBF-SFO), Perturb and Observe (RBF-P&O) and Particle

Swarm Optimization (RBF-PSO). Settling time, tracking time, oscillations reduc-

tion, power and energy harvested by each technique is compared. The superior

performance of the proposed GRNN-SFO is achieved in all operating conditions in-

cluding PS and CPS. Fast-tracking, high efficiency, and robustness are key features

of the proposed study which is a novel addition to the MPPT of PV systems. It is

evident from the results that GRNN-SFO is better in terms of convergence time,

and power tracked for global maxima tracking under various weather condition.

4.1 Introduction

This section covers three separate examples that illustrate the operating conditions

of a PV panel. The simulation setup for MPPT control based on hybrid MPPT

technique is shown in Figure 4.1, which is simulated using MATLAB/SIMULINK

72
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2018a. Performance of GRNN-SFO, is compared with GRNN-P&O, GRNN-PSO,

RBF-SFO, RBF-PSO, RBF-P&O under three different cases.

Figure 4.1: Simulation Setup of Machine Learning Based MPPT Control of a
PV System

Case 1 depicts the situation of rapidly changing irradiance where environmental

conditions are changing quickly but all PV panels are experiencing the same en-

vironmental effects. Case 2 represents the PS and CPS condition is presented in

Case 3. Getting stuck in LMPP, oscillations around GMPP, power tracked, track-

ing time, settling time, transients in current, duty cycle, and power efficiency are

the terms used for analysis.

In order to compare the performance strength of all techniques mean absolute

error (MAE), relative error (RE) and root mean square error (RMSE), statistical

analysis is also presented. The specifications of the components used for the sim-

ulations are presented in Table 4.1. Due to high switching frequency of the boost

converter, the design value of the inductor and capacitor is low which reduces the

size of the circuit and makes use of little hardware for the implementation. The

PV module used has a maximum power of 300W and load resistance selected for

the MPPT implementation is 70 ohms.
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Table 4.1: Specification of Electrical Components used in Simulation

ValuesComponents

4.2 Evaluation Criteria for MPPT Techniques

To evaluate the performance of MPPT techniques, the evaluation criteria is defined

as follows:

� Oscillations at GMPP, Power tracked, tracking time, settling time, tran-

sients in current, duty cycle, and power efficiency are the terms used for

comparative analysis.

� Tracking time is the time required to track the GMPP. Low tracking time

will lead to high efficiency and low power losses.

� Settling time is the time required to settle at the GMPP without oscillations.

Less settling time also leads to the higher efficiency of PV system.

� Efficiency of the technique determines how well a given technique performs

in terms of tracking the MPP.

� Robustness and sensitivity of MPPT techniques can be validated using the

statistical analysis such as Root mean square error (RMSE), Mean absolute

error (MAE), relative error (RE).

Panel  Power  300  W

Inductor  1.4  mH

Capacitor  at  input,  Cin  10  uF

Capacitor  at  output,  Cout  470  uF

Frequency  of  switching,  f  50  kHz

Resistive  load,  RL  70  Ω
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4.3 Case 1: Fast Changing Irradiance

Irradiance levels as observed by PV systems depend upon external environmental

conditions. In this case, the irradiance on all panels is kept same, however the

weather conditions are changing quickly.

4.3.1 Testing: Case 1

Performance of MPPT techniques under rapidly varying irradiance is shown in

Table 4.2, whereas power comparison amongst GRNN-SFO, GRNN-PSO, GRNN-

P&O, RBF-SFO, RBF-PSO, and RBF-P&O is shown in Table 4.3.

Due to sailfish and sardines movement for the search of the optimal solution,

SFO effectively tracks the GM with high efficiency and tracks GM in less time

as compared to other meta-heuristics techniques. This helps to generate a fine

data set of duty cycle and their corresponding values of power. Therefore SFO

effectively trains GRNN and achieves high efficiency in MPP tracking. Due to

random numbers embedded in PSO velocity vectors, PSO tracks GM with large

time and settles at less time at GM, as a result GRNN and RBF trained PSO also

settles at a low value along with power losses. Perturb and Observes lack of ability

to distinguish between LM and GM, results in poor performance and power yield.

In order to determine the performance under changing irradiance, an average value

is best suited which is taken into account in this work.

Table 4.2: Fast Changing Irradiance Pattern for Case 1 consisting of 4 Photo-
Voltaic Panels

CCCaaassseeesss IIIrrrrrraaadddiiiaaannnccceee SSS iii (((
KKKWWW
m2 )

PV1 1 0.8 0.65 0.4
CCCaaassseee 111 PV2 1 0.8 0.65 0.4

PV3 1 0.8 0.65 0.4
PV4 1 0.8 0.65 0.4



Results and Discussions 76

Case 1 deals with fast changing irradiance conditions, that is, the irradiance that

each PV panel experience is changing quickly however each PV Panel receives the

same amount of irradiance at all times. In this case, four panels have been used in

order to test 6 different techniques and a comparison has been made amongst them.

Figure 4.2 illustrates a graph which depicts four different types of irradiances, that

is 1KW
m2 , 0.8

KW
m2 , 0.4

KW
m2 , and 0.65KW

m2 have been used for experimental purposes in

this case.

Figure 4.2: Irradiance Pattern on PV Panels for Case 1 illustrating that all 4
panels receive changing but same irradiance at all times

The irradiance on PV panels change quickly as mentioned above which gives the

effect of fast varying irradiance. Figure 4.2 shows the irradiance pattern on four

panels under fast changing irradiance condition. Figure 4.3 illustrates the power

for given irradiances that are shown in Table 4.2.

Figure 4.3: Maximum Power Point for different irradiance patterns
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This means that for irradiance of 1KW
m2 , the maximum power that can be extracted

is 1160W, for 0.8KW
m2 986W can be extracted, for 0.4KW

m2 , the maximum power lies

at 459W, and 752W power can be extracted for the irradiance of 0.65KW
m2 .

4.3.2 Results: Case 1

Figure 4.4 to Figure 4.7 represent the power, and duty cycle variations tracked by

all six techniques that have been presented in this work. The results indicate that

the power levels as observed by PV systems depend upon external environmental

conditions. The rapid change in irradiance level is referred to as a rapid varia-

tion of irradiance. The comparison amongst GRNN-SFO, GRNN-PSO, GRNN-

P&O, RBF-SFO, RBF-PSO, and RBF-P&O states that the highest performance

is achieved by GRNN-SFO.

Figure 4.4 represents the power tracking curve for GRNN trained with SFO, PSO,

and Perturb and P&O (GRNN-SFO, GRNN-PSO, GRNN-P&O) under fast chang-

ing irradiance conditions. The proposed technique has been compared against one

of the conventional MPPT technique that is P&O, and one SI based MPPT tech-

nique, that is PSO.

GRNN-SFO is highly capable to track the power under fast changing irradiance

condition and tracks power in 81ms as opposed to GRNN-PSO’s 97ms and GRNN-

P&O’s 66ms. Integration of SFO with GRNN makes it very proficient for the

MPPT. GRNN-SFO tracks an average power of 835.595W with an exceptional

efficiency of 99.89% which shows the superiority of GRNN-SFO. The results con-

clude that GRNN-SFO is quick, robust and suitable in order to track MPP under

rapidly changing irradiance levels.

The second set of techniques with which GRNN-SFO is compared with is RBFN

trained with same conventional and swarm based techniques. Figure 4.5 illustrates

the power tracking curve for GRNN and RBFN trained by SFO, PSO and P&O

(RBF-SFO, RBF-PSO, RBF-P&O) under fast changing irradiance conditions.
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Figure 4.4: Power Tracking for PV panels for (a) Sail Fish Optimizer (b) Par-
ticle Swarm Optimization (c) Perturb and Observe trained by GRNN(GRNN-
SFO, GRNN-PSO, GRNN-P&O) under fast changing irradiance conditions

RBF-SFO tracks the power in fast changing irradiance condition in 88ms, RBF-

PSO in 101ms, and RBF-P&O in 69ms. RBF-SFO takes more time as compared

to RBF-P&O.
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Figure 4.5: Power Tracking for PV panels for (a) Sail Fish Optimizer (b)
Particle Swarm Optimization (c) Perturb and Observe trained by Radial Basis
Function (RBF-SFO, RBF-PSO, RBF-P&O) under fast changing irradiance

conditions

However it harvests more average power than the compared techniques, that is,

834.5W.

Results show, that amongst all 6 techniques GRNN-SFO works exceptionally well,

that is, it is even superior to RBFN. GRNN offers a swift ability in traking the

MPP.
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Figure 4.6: Duty Cycle variation for PV panels for (a) Sail Fish Opti-
mizer (b) Particle Swarm Optimization (c) Perturb and Observe trained by
GRNN(GRNN-SFO, GRNN-PSO, GRNN-P&O) under fast changing irradiance

conditions

The results illustrate that the order of performance is such that GRNN-SFO >

RBF-SFO > GRNN-PSO > RBF-PSO > GRNN-P&O > RBF-P&O.

Figure 4.6 represents the duty cycle variation for GRNN trained by SFO, PSO and

P&O (GRNN-SFO, GRNN-PSO, GRNN-P&O) under fast changing irradiance

conditions.
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Figure 4.7: Duty Cycle variation for PV panels for (a) Sail Fish Optimizer (b)
Particle Swarm Optimization (c) Perturb and Observe trained by Radial Basis
Function (RBF-SFO, RBF-PSO, RBF-P&O) under fast changing irradiance

conditions

The proposed technique has been compared against P&O, and PSO based GRNN

and RBFN. GRNN-SFO is very quick to adjust the duty cycle to reach MPP as

compared to GRNN-PSO and GRNN-P&O. SFO trains GRNN in such a way that

it makes it very proficient for the MPPT. GRNN-SFO’s ability to extract 1.633KJ

energy makes it an excellent choice for tracking the MPP.
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Figure 4.7 illustrates the duty cycle variation of RBFN trained by SFO, PSO

and P&O (RBF-SFO, RBF-PSO, RBF-P&O) under fast-changing irradiance con-

ditions. RBF-SFO adjusts its duty cycle in fast changing irradiance condition

whilst harvesting the energy of 1.631KJ which is more as compared to RBF-PSO

and RBF-P&O.

GRNN-SFO in terms of duty cycle in a similar manner to power works better as

compared to RBF-SFO illustrating the high functionality of GRNN-SFO. Results

denote that for duty cycle the order of performance is such that GRNN-SFO >

RBF-SFO > GRNN-PSO > RBF-PSO > GRNN-P&O > RBF-P&O.

4.3.3 Performance Evaluation: Case 1

In case 1, GRNN and RBFN trained with SFO have been compared with P&O

and PSO also trained by GRNN an RBFN. The cumulative set of results in terms

of tracking time, settling time, energy, average power tracked, and efficiency has

been illustrated in Table 4.3. From the results, it is evident that GRNN-SFO

bypasses all other techniques in terms of performance and MPPT.

Table 4.3: Combined Performance Analysis for Case 1: Fast Changing Irra-
diance

Tech Tracking
Time(ms)

Settling
Time
(ms)

Energy
(KJ )

Avg.
Power
Tracked
W

Efficiency
(%)

GRNN-SFO 81 119 1.633 835.595 99.89
GRNN-PSO 97 136 1.632 829.650 99.18
GRNN-P&O 66 100 1.630 827.930 98.97
RBF-SFO 88 124 1.631 834.500 99.76
RBF-PSO 101 139 1.630 828.150 99.00
RBF-P&O 69 105 1.629 827.100 98.86

Figure 4.8 illustrates the settling time of all six techniques. The results show that

GRNN-SFO settles at 119ms, GRNN-PSO settles at 136ms, GRNN-P&O settles

at 100ms, RBF-SFO settles at 124ms, RBF-PSO settles at 139ms, and RBF-P&O

settles at 105ms
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Figure 4.8: Settling Time comparative analysis of all techniques for case 1

Figure 4.9: Tracking Time comparative analysis of all techniques for case 1

The second evaluation criterion that is used in this thesis is tracking time. Tracking

time corresponds to better efficiency. Figure 4.9 shows the tracking time of all six

techniques. The results show that GRNN-SFO tracks power in 81ms, GRNN-

PSO in 97ms, GRNN-P&O in 66ms, RBF-SFO in 88ms, RBF-PSO in 101ms, and

RBF-P&O in 69ms.

The third criterion to test the performance of all techniques is efficiency. Figure 4.7

and Figure 4.8 give an impression some techniques are better than GRNN-SFO.
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However, the efficiency of techniques is based on the evaluation of all the param-

eters combined. The objective is to achieve high efficiency. Figure 4.10 shows

a comparative analysis of efficiencies achieved by all six techniques which clearly

shows the superior performance of GRNN-SFO under fast changing irradiance.

Figure 4.10: Efficiency comparison of all techniques for case 1

Figure 4.11 is a comparative graphical illustration of all the techniques that have

been presented. The graph shows the superior performances of GRNN-SFO in

terms of tracking time, average power tracked and efficiency. It can be clearly

seen that GRNN-SFO tracks power in 81ms, and RBF-SFO in 88ms with average

power tracked of 835.56W and 834.5W respectively. GRNN-SFO tracks MPP

with 99.89% efficiency whereas RBF-SFO tracks MPP with 99.76% efficiency. The

high efficiency of GRNN-SFO fast tracking time makes it a much better choice in

tracking MPP since GRNN-SFO offers better results more so than RBF-SFO.

Case 1 deals with fast changing irradiance on PV panels. Based on these re-

sults, it is concluded that GRNN-SFO > RBF-SFO > GRNN-PSO > RBF-PSO

> GRNN-P&O > RBF-P&O. GRNN-SFO settles 15% faster at GM which jus-

tifies its superior performance. One of the major areas of problem is oscillations

around GM offered by MPPT techniques which costs the efficiency of PV systems

and reduce the power tracked. These issues have been significantly softened and

reduced using GRNN-SFO.
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Figure 4.11: Comparative analysis of all 6 techniques in terms of settling time,
tracking time, and efficiency for case 1: Fast Changing Irradiance

4.4 Case 2: Partial Shading Condition (PSC)

Case 2 deals with PS condition. All PV panels receive different irradiances which

result in a non-linear curve. Under this condition, the PV curve consists of a

multiple peaks. Only one peak is considered as a GMPP, while other peaks are

known as LMPP. The MPPT techniques have a tendency to either oscillate or get

stuck at LM as a result of these multiple peaks. In order to test the performance

of any technique, PS condition is an ideal scenario.

Under PS, GMPP is at 604.7W for our presented sets of irradiance. Table 4.4

represents irradiance patterns.

4.4.1 Testing: Case 2

Four PV panels are utilized to evaluate the performance of all six approaches. All

PV panels receive changing irradiances which replicates the condition of PS. Table

4.4 illustrates the irradiances that is received by all panels. Figure 4.12 depicts

the graphical representation of the irradiance levels on PV panels.
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Figure 4.12: Irradiance Pattern on Photo-Voltaic (PV) Panels for Case 2
illustrating that all 4 panels receive different irradiance creating a condition of

partial shading

Table 4.4: Partial Shading Condition Pattern for Case 2 consisting of 4 Photo-
Voltaic Panels

CCCaaassseeesss IIIrrrrrraaadddiiiaaannnccceee SSS iii (((
KKKWWW
m2 )

PV1 0.96
CCCaaassseee 222 PV2 0.75

PV3 0.64
PV4 0.40

Case 2 deals with PS condition. This is a special case, where an array of PV system

gets partially shaded. This PS can be caused by the shadows of nearby trees,

buildings, mountains, or dust. PV panels are installed with built-in protection

diodes knows as bypass diodes. These diodes are installed in order to protect the

PV panel from getting hotspots which can be caused by PS.

The main idea behind PS is such that, as soon as one or more panels in an array

of PV panels get shaded, a current mismatch is created between the shaded and

unshaded panels. Had it not been for the bypass diodes which provide an alternate

path for current, the shaded panels would heat up to the point of damage. While

on one hand, bypass diodes provide protection during the current mismatch. On

the other hand they result in a non-linear power curve that contains multiple power

points rather than only one. In this curve, there is only one GMPP amongst several
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LMPPs. These LMPPs makes it very hard and difficult to track the GMPP. This

is where the conventional algorithms fail to perform as desired.

Figure 4.13 illustrates the maximum power that can be extracted under the given

irradiance conditions shown in Table 4.4. This means that for the irradiance of

0.96KW
m2 , 0.75

KW
m2 , 0.4

KW
m2 and 0.64KW

m2 the maximum power that can be extracted

is 604.7W.

Figure 4.13: Maximum Power under PSC for the given irradiances

4.4.2 Results: Case 2

Figure 4.14 to Figure 4.17 represents the power, duty cycle and voltage tracked

by 6 techniques that have been presented for case 2. The results indicates that

the irradiance levels as observed by PV panels depend upon external environ-

mental conditions. The comparison amongst GRNN-SFO, GRNN-P&O, GRNN-

PSO, RBF-SFO, RBF-PSO and RBF-P&O states that the highest performance is

achieved by GRNN-SFO.

Figure 4.14 represents the power tracking curve for GRNN trained with SFO, PSO

and P&O (GRNN-SFO, GRNN-PSO, GRNN-P&O) under PSC.

GRNN-SFO’s capability to track the power in 89ms under PS Condition as op-

posed to GRNN-PSO’s 101ms and GRNN-P&O’s 66ms makes it strong and top

quality technique for MPPT. GRNN trained with SFO offers a quick MPPT so-

lution that tracks 604.4W power with a high efficiency of 99.90%.
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Figure 4.14: Power Tracking for PV panels for (a) Sail Fish Optimizer (b) Par-
ticle Swarm Optimization (c) Perturb and Observe trained by GRNN(GRNN-

SFO, GRNN-PSO, GRNN-P&O) under Partial Shading Condition

The results conclude that GRNN-SFO is quick, robust and suitable for MPPT

under PS condition.

The second set of technique with which GRNN-SFO is compared with includes

the training of conventional and swarm based techniques with RBFN. Figure 4.15

illustrates the power tracking curve for RBFN trained with SFO, PSO and P&O
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Figure 4.15: Power Tracking for PV panels for (a) Sail Fish Optimizer (b)
Particle Swarm Optimization (c) Perturb and Observe trained by Radial Basis
Function (RBF-SFO, RBF-PSO, RBF-P&O) under Partial Shading Condition

(RBF-SFO, RBF-PSO, RBF-P&O) under PS Condition.

RBF-SFO tracks the power in fast changing irradiance condition and tracks power

in 92ms, RBF-PSO in 105ms, and RBF-P&O in 65ms. Even with a high tracking

power of RBF-SFO, from the results it can be deemed that GRNN-SFO is still

a better choice in terms of tracking MPP even though RBF-SFO tracks 603.4W
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power which is just 1W off from GRNN-SFO.

It can be concluded that both proposed technique, that is, GRNN-SFO works

exceptionally well for tracking the MPP under PS condition. The order of perfor-

mance of all the techniques is concluded as: GRNN-SFO > RBF-SFO > GRNN-

PSO > RBF-PSO > GRNN-P&O > RBF-P&O for PSC.

Figure 4.16 represents the duty cycle variation for GRNN trained with SFO, PSO

and P&O (GRNN-SFO, GRNN-PSO, GRNN-P&O) under PS Condition (PSC).

GRNN trained with SFO is very proficient for the MPPT. GRNN-SFO’s ability to

extract 0.284KJ energy makes it an excellent choice for tracking the MPP. Figure

4.17 illustrates the duty cycle variation of RBF trained with SFO, PSO, and P&O

(RBF-SFO, RBF-PSO, RBF-P&O) under PSC for the second set of technique

that is used for comparison against GRNN-SFO.

RBF-SFO adjusts its duty cycle in fast changing irradiance condition whilst har-

vesting an energy of 0.2839KJ which is more as compared to RBF-PSO and RBF-

P&O.

RBF-SFO adjusts its duty cycle in PS condition whilst harvesting an energy of

0.2839KJ which is more as compared to RBF-PSO and RBF-P&O.

GRNN-SFO in terms of Duty cycle in the similar manner to power works better

as compared to RBF-SFO illustrating the high functionality of GRNN-SFO.

Even though RBF-SFO works better than GRNN-PSO, GRNN-P&O, RBF-PSO

and RBF-P&O, results denote that for duty cycle the order of performance is

such that GRNN-SFO > RBF-SFO > GRNN-PSO > RBF-PSO > GRNN-P&O

> RBF-P&O.

Figure 4.17 shows that the highest efficiency is achieved by GRNN-SFO. The

efficiency of GRNN-SFO, RBF-SFO, GRNN-PSO, RBF-PSO, GRNN-P&O, and

RBF-P&O is 99.9%, 99.73%, 98.47%, 98.35%, 86.04%, and 85.91% respectively.
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Figure 4.16: Duty Cycle variation for PV panels for (a) Sail Fish Opti-
mizer (b) Particle Swarm Optimization (c) Perturb and Observe trained by
GRNN(GRNN-SFO, GRNN-PSO, GRNN-P&O) under Partial Shading Condi-

tion

4.4.3 Performance Evaluation: Case 2

In case 2, two sets of techniques, that is, GRNN and RBF have been utilized.

GRNN-SFO has been compared with P&O and PSO along with RBFN trained

with SFO, PSO and P&O. Therefore GRNN-SFO has been compared with five

techniques under PSC. The cumulative set of results in terms of tracking time,
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Figure 4.17: Duty Cycle variation for PV panels for (a) Sail Fish Optimizer (b)
Particle Swarm Optimization (c) Perturb and Observe trained by Radial Basis
Function (RBF-SFO, RBF-PSO, RBF-P&O) under Partial Shading Condition

settling time, energy, average power tracked and efficiency has been illustrated in

Table 4.5.

GRNN-SFO has the ability to settle at GM with low oscillations. In addition,

GRNN-SFO tracks GM in less iteration as compared to other MPPT techniques.

GRNN-SFO tracks GMPP at 604.4W. As with conventional MPPT techniques

like P&O, it gets trapped in LM due to its working behavior which affects the
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Table 4.5: Combined Performance Analysis for Case 2: Partial Shading Con-
dition

Tech Tracking
Time(ms)

Settling
Time
(ms)

Energy
(KJ )

Avg.
Power
Tracked
W

Efficiency
(%)

GRNN-SFO 89 131 0.2847 604.4 99.99
GRNN-PSO 101 143 0.2825 601.8 99.47
GRNN-P&O 66 100 0.2477 520.6 86.04
RBF-SFO 92 135 0.2839 603.4 99.73
RBF-PSO 105 147 0.2820 601.1 99.35
RBF-P&O 68 102 0.2471 519.8 85.91

training of GRNN and therefore GRNN-P&O also gets stuck in LM during PSC.

GRNN-PSO even though with its high efficiency, that is, 99.47% is not up to the

mark since the time it takes to track GM and time it takes to settle is 101ms

and 143ms respectively. In the similar manner, RBF-SFO outperforms all other

techniques except for GRNN-SFO. The highest power is achieved by GRNN-SFO

with an efficiency of 99.90%. From the results, it is evident that GRNN-SFO is a

powerful technique when it comes to MPPT.

Figure 4.18: Settling Time comparative analysis of all techniques for case 2

Figure 4.18 illustrates the settling time of all six techniques.
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The results show that GRNN-SFO settles at 131ms, GRNN-PSO settles at 143ms,

GRNN-P&O settles at 100ms, RBF-SFO settles at 135ms, RBF-PSO settles at

147ms, and RBF-P&O settles at 102ms.

The second evaluation criterion that is used in this thesis is tracking time. Tracking

time corresponds to better efficiency. Figure 4.19 shows the tracking time of all

six techniques. The results show that GRNN-SFO tracks power in 89ms, GRNN-

PSO in 101ms, GRNN-P&O in 66ms, RBF-SFO in 92ms, RBF-PSO in 105ms,

and RBF-P&O in 68ms.

Figure 4.19: Tracking Time comparative analysis of all techniques for case 2

The third criterion to test the performance of all techniques is efficiency. Figure

4.18 and 4.19 give an impression some techniques are better than GRNN-SFO.

However, efficiency of techniques is based on all of the parameters combined. The

objective is to achieve high efficiency. Figure 4.20 shows the comparative analy-

sis of efficiencies achieved by all six techniques which clearly shows the superior

performance of GRNN-SFO under PSC.

Figure 4.21 is a comparative graphical illustration of all the techniques that have

been presented for tracking MPP under PSC. The graph shows the superior per-

formances of GRNN-SFO in terms of tracking time, power tracked and efficiency.

It can be clearly seen that GRNN-SFO tracks power in 89ms, and RBF-SFO in

92ms with 604.4W and 603.4W power tracked respectively. GRNN-SFO tracks
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Figure 4.20: Efficiency comparison of all techniques for case 2

Figure 4.21: Comparative analysis of all 6 techniques in terms of settling time,
tracking time, and efficiency for case 2: Partial Shading Condition

MPP with 99.90% efficiency whereas RBF-SFO tracks MPP with 99.73% efficiency.

The high efficiency of GRNN-SFO with fast tracking time makes it a much better

choice in tracking the MPP.
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4.5 Case 3: Complex Partial Shading (CPS) Con-

dition

In case 3, complex partial shading is presented with 8 PV modules are connected

in series. The irradiance levels for case 3 is presented in Table 4.6. Table 4.6

illustrates the irradiances which all PV panels receive. In this case all PV panels

receive varying irradiance creating a condition where LMPP and GMPP are so

close that is becomes extremely hard to track the MPP.

4.5.1 Testing: Case 3

Eight PV panels have been used in order to test the performance of the techniques.

All PV panels receive changing irradiance which imitates the condition of CPS.

Case 3 illustrates a condition where the difference between GMPP and LMPP is

very minute. This low difference makes tracking of GMPP extremely hard for

MPPT techniques.

Figure 4.22: CPS scheme and cluster formation

PSC arises when the modules of a PV array do not get equal irradiation. The

bypass diode effect in series-connected PVmodules causes the PV curves to become

complicated, with several peaks appearing in the curve. Number of peaks are

dependant upon he number of PV panels undergoing shading.
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If the number of partially shaded modules is considerable and the shading is widely

dispersed, a unique type of PV curve with numerous closely connected maximum

points appears on the PV curve, as illustrated in Figure 4.22. The cluster head 1

and LM2 of cluster 2 have relatively comparable values, which is intriguing.

As a result, the method is not activated or initialized, and swarm particles are

unable to scan the region between these two sites. Furthermore, near the conclu-

sion of iteration cycles, the velocity vectors are purposely designed to be slowed

down for improved convergence and less oscillations at MPP. In this scenario, the

outcome is undetected GMPP. It results in a considerable reduction in available

power. The CPS is to blame for this loss. Table 4.6 depicts the irradiances recieved

by all panels establishing a CPS state.

Table 4.6: Complex Partial Shading Condition Pattern for Case 3 consisting
of 8 Photo-Voltaic Panels

CCCaaassseeesss IIIrrrrrraaadddiiiaaannnccceee SSS iii (((
KKKWWW
m2 )

PV1 0.46 PV5 0.68
CCCaaassseee 333 PV2 0.31 PV6 0.77

PV3 0.54 PV7 0.85
PV4 0.40 PV8 0.90

Case 3 deals with a special condition of CPS. This is a special case, where a long

array of PV system gets partially shaded. This PS can be caused by the shadows of

nearby trees, buildings, mountains, or dust. PV panels are installed with built-in

protection diodes known as bypass diodes.

These diodes are installed in order to protect the PV panel from getting hotspots

which can be caused by PS. These bypass diodes have a shortcoming as well. At

one hand, where they provide protection against hotspots, on the other hand they

result in a non-linear power curve which contains multiple power points rather than

only one. In this curve, there is only one global power point in between several

local power points. These local power points makes it very hard and difficult to

track the GMPP. This is where the conventional algorithms fail to perform as

desired.
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In order to replicate the condition of PSC, eight different irradiances of 0.85KW
m2 ,

0.31KW
m2 , 0.77

KW
m2 , 0.68

KW
m2 , 0.54

KW
m2 , 0.46

KW
m2 , 0.40

KW
m2 , and 0.90KW

m2 have been

used. This complex shading results in increased number local minima’s as com-

pared to the simple case of PS and it makes it very complex for the MPPT tech-

niques to track the MPP. The probability of tracking the MPP wrong is excep-

tionally high in this case.

Figure 4.23 illustrates the maximum power that can be extracted under the given

irradiance conditions shown in Table 4.6. This means that for the irradiance of

0.85KW
m2 , 0.31

KW
m2 , 0.77

KW
m2 , 0.68

KW
m2 , 0.54

KW
m2 , 0.46

KW
m2 , 0.40

KW
m2 , and 0.90KW

m2 the

maximum power that can be extracted is 1077.6W.

Figure 4.23: Maximum Power under partial shading condition for the given
irradiances in Table 4.6

4.5.2 Results: Case 3

Figure 4.24 to Figure 4.27 represents the power, and duty cycle tracked by the six

techniques under CPS.

The results indicate that CPS results in increased number of local minima’s as

compared to the simple case of PS making MPPT more difficult. The comparison

amongst GRNN-SFO, GRNN-P&O, GRNN-PSO, RBF-SFO, RBF-PSO and RBF-

P&O states that the highest performance is achieved by GRNN-SFO.
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Figure 4.24: Power Tracking for PV panels for (a) Sail Fish Optimizer (b) Par-
ticle Swarm Optimization (c) Perturb and Observe trained by GRNN(GRNN-
SFO, GRNN-PSO, GRNN-P&O) under Complex Partial Shading Condition

Figure.4.24 represents the power tracking curve of GRNN trained using SFO,

PSO and P&O (GRNN-SFO, GRNN-PSO, GRNN-P&O) under CPS.

GRNN-SFO’s capability to track the power in 89ms under CPS as opposed to

GRNN-PSO’s 101ms and GRNN-P&O’s 66ms makes it a suitable technique for

MPP. Training of GRNN with SFO helps to track MPP quickly, that is, it tracks
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1077W power with a high efficiency of 99.94%. The results conclude that GRNN-

SFO is quick, robust and suitable in order to track the MPP under rapid changing

irradiance levels.

The second set of technique includes the training of conventional and swarm based

techniques with RBFN. Figure 4.25 illustrates the power tracking curve for RBFN

trained with SFO, PSO and P&O (RBF-SFO, RBF-PSO, RBF-P&O) under PSC.

RBF-SFO tracks the power in fast changing irradiance condition and tracks power

in 92ms, RBF-PSO in 10ms, and RBF-P&O in 68ms. RBF-SFO is swiftness in

order to track MPP makes it well contended techniques for MPP applications.

RBF-SFO tracks 1076.3W power which is just 0.7W less than GRNN-SFO.

However, even with high performance of RBF-SFO, results shows that GRRN-SFO

outperforms RBF-SFO.

It can be concluded that GRNN-SFO works exceptionally well for the tracking the

MPP.

The order of performance of all the techniques is as follows: GRNN-SFO > RBF-

SFO > GRNN-PSO > RBF-PSO > GRNN-P&O > RBF-P&O for CPS.

Figure 4.26 represents the duty cycle variation of GRNN trained with SFO, PSO

and P&O (GRNN-SFO, GRNN-PSO, GRNN-P&O) under CPS.

The proposed technique has been compared with GRNN trained with SFO, PSO

and P&O GRNN-SFO is very quick to adjust the duty cycle to reach the MPP as

compared to GRNN-PSO and GRNN-P&O under CPS. Integration of SFO with

GRNN makes it very proficient for the MPPT. GRNN-SFO’s ability to extract

0.4847KJ energy makes it an excellent choice for tracking the MPP.

Figure 4.27 illustrates the duty cycle variation of RBFN trained with SFO, PSO

and P&O (RBF-SFO, RBF-PSO, RBF-P&O) under PSC for the second technique

that has been proposed in this thesis.

RBF-SFO adjusts its duty cycle in fast changing irradiance condition whilst har-

vesting the energy of 0.4839KJ which is more as compared to RBF-PSO and
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Figure 4.25: Power Tracking for PV panels for (a) Sail Fish Optimizer (b)
Particle Swarm Optimization (c) Perturb and Observe trained by Radial Basis
Function (RBF-SFO, RBF-PSO, RBF-P&O) under Complex Partial Shading

Condition

RBF-P&O. GRNN-SFO in terms of Duty cycle in a similar manner to power works

better as compared to RBF-SFO illustrating the high functionality of GRNN-SFO.

Results denote that for duty cycle the order of performance is such that GRNN-

SFO > RBF-SFO > GRNN-PSO > RBF-PSO > GRNN-P&O > RBF-P&O.

The control parameter, that is, duty cycle as shown in Figure 4.26 and Figure
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Figure 4.26: Duty Cycle variation for PV panels for (a) Sail Fish Opti-
mizer (b) Particle Swarm Optimization (c) Perturb and Observe trained by
GRNN(GRNN-SFO, GRNN-PSO, GRNN-P&O) under Complex Partial Shad-

ing Condition

4.27 shows that the highest efficiency is achieved by GRNN-SFO. The efficiency of

GRNN-SFO, RBF-SFO, GRNN-PSO, RBF-PSO, GRNN-P&O, and RBF-P&O is

99.94%, 99.88%, 99.48%, 99.44%, 47.38%, and 47.15% respectively.
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Figure 4.27: Duty Cycle variation for PV panels for (a) Sail Fish Optimizer (b)
Particle Swarm Optimization (c) Perturb and Observe trained by Radial Basis
Function (RBF-SFO, RBF-PSO, RBF-P&O) under Complex Partial Shading

Condition

4.5.3 Performance Evaluation: Case 3

The power tracked by GRNN-SFO, GRNN-PSO, GRNN-P&O, RBF-SFO, RBF-

PSO and RBF-P&O is 1077W, 1072.1W, 510.65W, 1076.3W, 1071.6W and 508.11W
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respectively. RBF-PSO and GRNN-PSO gets stuck in local maxima due to veloc-

ity vector which restricts the movement of population. RBF-SFO achieves maxima

by breaking the local maxima trap and stabilizing with zero oscillations at GM as

shown in Figure 5.21 in less iterations.

GMPP tracking time of GRNN-SFO, GRNN-PSO, GRNN-P&O, RBF-SFO, RBF-

PSO and RBF-P&O is 89ms, 101ms, 66ms, 92ms, 105ms and 68ms respectively.

Performance comparison of these techniques in the form of ranking can be repre-

sented as GRNN-SFO > RBF-SFO > GRNN-PSO > RBF-PSO > GRNN-P&O

> RBF-P&O.

In case 3, two proposed techniques, that is, GRNN and RBFN trained with SFO

has been compared with PSO and P&O which have also been trained by GRNN an

RBF under CPS. The cumulative set of results in terms of tracking time, settling

time, energy, average power tracked an efficiency has been illustrate in the Table

4.7. From the table it is evident that GRNN-SFO bypass all other techniques in

terms of performance for MPPT.

Table 4.7: Combined Performance Analysis for Case 3: Complex Partial Shad-
ing Condition

Tech Tracking
Time(ms)

Settling
Time
(ms)

Energy
(KJ )

Avg.
Power
Tracked
W

Efficiency
(%)

GRNN-SFO 89 131 0.4847 1077 99.94
GRNN-PSO 101 143 0.4825 1072.1 99.48
GRNN-P&O 66 100 0.4477 510.5 47.38
RBF-SFO 92 135 0.4839 1076.3 99.88
RBF-PSO 105 147 0.4820 1071.6 99.44
RBF-P&O 68 102 0.4471 508.11 47.15

The results show that GRNN-SFO settles at 131ms, GRNN-PSO settles at 143ms,

GRNN-P&O settles at 100ms, RBF-SFO settles at 135ms, RBF-PSO settles at

147ms, and RBF-P&O settles at 102ms. Figure 4.28 illustrates the settling of all

six techniques.

The second evaluation criterion that is used in this thesis is tracking time. Tracking

time corresponds to better efficiency.



Results and Discussions 105

Figure 4.28: Settling Time comparative analysis of all techniques for Case 3

Figure 4.29 shows the tracking time of all six techniques. The results show that

GRNN-SFO tracks power in 89ms, GRNN-PSO in 101ms, GRNN-P&O in 66ms,

RBF-SFO in 92ms, RBF-PSO in 105ms, and RBF-P&O in 68ms.

Figure 4.29: Tracking Time comparative analysis of all techniques for Case 3

Figure 4.30 shows the efficiency comparison of all 6 techniques.

Figure 4.31 is a comparative graphical illustration of all the techniques that has

been presented for tracking MPP under PSC.
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Figure 4.30: Efficiency comparison of all techniques for case 3

The graph shows the superior performances of GRNN-SFO and RBF-SFO in terms

of tracking time, power tracked and efficiency.

Figure 4.31: Comparative analysis of all 6 techniques in terms of settling time,
tracking time, and efficiency for case 3: Complex Partial Shading Condition

It can be clearly seen that GRNN-SFO tracks power in 89ms, and RBF-SFO in

92ms with 1077W and 1076.3W power tracked respectively. GRNN-SFO tracks

the MPP with 99.94% efficiency whereas RBF-SFO tracks MPP with 99.88% effi-

ciency. The high efficiency of GRNN-SFO and RBF-SFO with fast tracking time
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makes them a much better choice, particularly GRNN-SFO in tracking the MPP

since GRNN-SFO offers better results more so than RBF-SFO. Case 3 deals with

CPS condition on PV panels. On the basis of these results, it is concluded that

GRNN-SFO > RBF-SFO > GRNN-PSO > RBF-PSO > GRNN-P&O > RBF-

P&O. One of the major area of problems in tracking the MPPT under CPS is

that the techniques either tend to get stuck in local minimums or they take signif-

icantly longer time to get to the GMPP and track it since it is easier to get stuck

in LMPP. Both of these major issues are dealt with GRNN-SFO and RBF-SFO

4.6 Efficiency and Performance Evaluation

The performance evaluation of GRNN-SFO and RBF-SFO with other competing

techniques helps to understand common characteristics. We know that conven-

tional P&O is a comparatively faster and a simple to implement technique because

of gradient based control, however significant power loss due to oscillations under

varying irradiances and trapping of LM makes P&O a non-desirable technique.

On the other hand another technique, under PS, PSO has high efficiency in locating

GMPP but it offers a low power efficiency. As seen in case 3, GRNN-P&O causes

large fluctuations, which are not very desirable.

One of the best approaches to grasp the overlapping features of GRNN-SFO with

other MPPT techniques is to do a performance evaluation. Case 2 states that

GRNN-PSO gives rise to immense fluctuations which are not very desirable.

On the other hand, GRNN-SFO provides a solution to these issues with its high

efficiency of 99.9% under all operating conditions. In comparison to other tech-

niques, it is safe to say that GRNN-SFO clearly shows an upper hand performance.

Moreover, GRNN-SFO has an ability to track GM at a fast rate which is evident

from case I, which shows that GRNN-SFO performs better in the transient phase.

The ability of other techniques in comparison to power convergence as stated in

case 2 is lower whereas the GM is located successfully and rapidly by GRNN-SFO.

Figure 4.32 shows the statistical analysis comparison of all 6 techniques.
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Figure 4.32: Statistical Analysis Comparison of Competing Techniques

Results conclude that:

� GRNN-SFO has an outstanding tracking ability, as demonstrated by case

1,2 and 3 where it outperforms all other techniques.

� Case 2 and 3 shows that GRNN-SFO can tackle CPS better. The perfor-

mance of RBF-SFO and other comparative techniques are hampered by the

use of random initialization even after they have located the GMPP.

� Robustness and sensitivity of all techniques inspected by mean, standard

deviation (SD), relative error (RE) by Equation 4.1, mean absolute error

(MAE) by Equation 4.2 and root means square error (RMSE) by Equation

4.3.

ErrorRE =
(PPV I − PPV )

PPV

× 100 (4.1)

ErrorMAE =

n∑
i=1

(PPV I − PPV )

n

(4.2)
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ErrorRMSE =

√√√√√ n∑
i=1

(PPV I − PPV )
2

n

(4.3)

Where Ppvi represents the power at STC, n represent the number of samples.

Figure 4.32 presents RMSE, MAE, RE, and SR.

4.7 Chapter Summary

In this chapter, the proposed MPPT technique is tested on different scenarios

which include fast varying irradiance, PSC and CPS. The comparison of GRNN-

SFO is made against GRNN-PSO, GRNN-P&O, RBFNN-SFO, RBFNN-PSO and

RBFNN-P&O. The proposed technique is also analyzed using the statistical anal-

ysis. The proposed technique shows better results as compared to other competing

techniques.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The author concluded the following research work in this thesis in following man-

ners:

1. The importance of renewable energy is established and its significance is

highlighted. The effects of Partial Shading (PS) are conceptualized for a

better understanding of large-scale PV system power generation. The work

is presented in chapters 1 and 2. Complex partial shading (CPS) is also

introduced and conceptualized.

2. In chapter 3, the author proposed a hybrid meta heuristic and machine

learning based MPPT technique which uses Sailfish Optimizer to train the

GRNN(GRNN-SFO). The outcome verifies that the proposed technique is

superior to other compared techniques in terms of GMPP tracking and re-

duced oscillations around GMPP. Tracking efficiency of up to 99.9% and

negligible oscillations are notable contributions in this field.

3. Proposed work is tested on Fast Varying Irradiance, PSC and CPS. Also,

the statistical analysis is presented to check the superior performance of

proposed technique.
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5.2 Future Work

Using a unique hybrid intelligence-based method, this thesis made a significant

contribution in the field of MPPT of PV systems under PS and CPS circum-

stances. The knowledge and experience gained through study in this sector has

shown a number of limitations and benefits in the field of PV system MPPT con-

trol. Field investigations, CPS, and hardware components, in particular, need a

significant amount of effort. A uniform environment, stronger counter-measures,

and thorough models of such systems are all needed.

In future a scaled up the model of upto 1MW will be implemented inorder to study

the performance of proposed technique. Also integration of the thermoelectric

generator with the PV system for producing energy from waste heat recovery

will be inspected. The performance of the proposed MPPT technique will be

tested on the hybrid PV-TEG models. Morever, complex partial shading will be

investigated further in order for PV systems to operate perfectly when integrated

with DC microgrids.
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